1950350007 - Whiteside is Morrison/ Well Contonised or Supuland/ Tech Cayend

EPA Region 5 Records Ctr.

942223

PHASE I
REMEDIAL INVESTIGATION REPORT
CITY OF MORRISON
MORRISON, ILLINOIS

October 1987

VOLUME I

PREPARED FOR:

ILLINOIS ENVIRONMENTAL PROTECTION AGENCY

JOHN MATHES & ASSOCIATES, INC.
Post Office Box 330
210 West Sand Bank Road
Columbia, Illinois 62236

RECEIVEDOCT 28 1987

IEPA/DLPC

TABLE OF CONTENTS

			Page
LIS	r of	TABLES	iv
LIST	OF	FIGURES	v
EXE	CUTIV	E SUMMARY	vi
1	INTR	ODUCTION	1
	1.1	General	1
	1.2	Background information	4
	1.3	Remedial investigation summary	10
	1.4	Overview of report	12
2		STIGATION SUMMARY	13
	2.1	Soil gas investigation	13
	2.2	Drilling	14
	2.3	Groundwater monitoring well construction	21
	2.4	Discrete-interval groundwater sampling	23
	2.5	Composite groundwater sampling	24
	2.6	Surface water and sediment sampling	26
	2.7	Private well survey Miscellaneous field tests and measurements -	27 27
			21
3	SAMP	LE ANALYSIS	29
	3.1	Groundwater sample chemical analysis 3.1.1 Discrete-interval groundwater	29
		samples	29
	3.2	3.1.2 Composite groundwater samples Surface water and sediment sample chemical	29
		analysis	30
4	REGI	ONAL HYDROGEOLOGY	31
	4.1	Geomorphology	31
	4.2	Geology	33
	4.3	Groundwater hydrology	35
5		HYDROGEOLOGY	38
	5.1	Geology	38
	5.2	Groundwater hydrology	48
6		NDWATER QUALITY	53
	6.1	Discrete-interval groundwater samples	53
	6.2	Composite groundwater samples	55
		6.2.1 Volatile organic compounds	56
		6.2.2 Semi-volatile organic compounds	59
		6.2.3 Inorganic compounds	62

TABLE OF CONTENTS, Continued

		<u>Page</u>
7	SURFACE WATER QUALITY	65
	7.1 Surface water sampling results	65
	7.2 Surface sediment sampling results	65
8	CONCLUSIONS	69
9	RECOMMENDATIONS	72
	9.1 Site investigations	72
	9.2 Remedial action alternatives	75
REF	ERENCES	

<u>Appendix</u>

- A Tracer Research Corporation soil gas report
- B Geologic logs
- C Well construction diagrams
- D Well development and groundwater sampling data forms
- E Surface water and sediment sampling forms

LIST OF TABLES

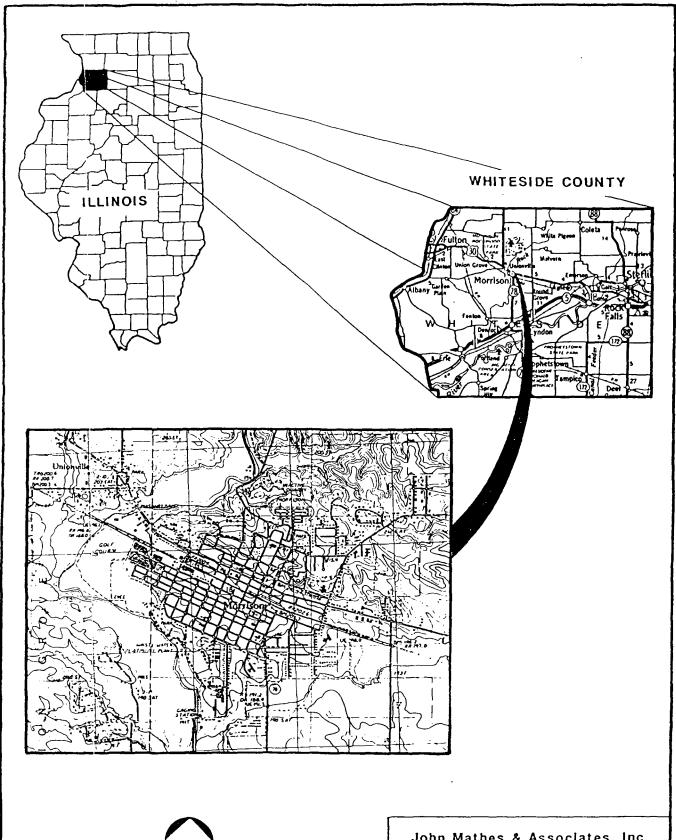
<u>Table</u>		<u>Page</u>
1-1	Trichloroethylene concentrations in water and soil from site of General Electric's TCE tank	9
2-1	Depth intervals of discrete-interval ground- water sampling	25
2-2	Private well survey list	28
5-1	Monitoring well and geologic information	39
5-2	Groundwater data	50
6-1	Discrete-interval groundwater sampling results, volatile organic compounds	54
6-2	Composite groundwater sampling results, volatile organic compounds	57
6-3	Composite groundwater sampling results, semi-volatile organic compounds	61
6-4	Composite groundwater sampling results, inorganic compounds	63
7-1	Surface water sampling results, volatile organic compounds	66
7-2	Surface sediment sampling results, volatile organic compounds	67

LIST OF FIGURES

<u>Figure</u>		<u>Page</u>
1-1	Site location map	2
1-2	Approximate area of investigation	3
2-1	Soil gas sampling locations	15
2-2	Iso-concentration map of trichloroethene	16
2-3	Iso-concentration map of 1,1,1-trichloroethane	17
2-4	Iso-concentration map of tetrachloroethene	18
2-5	<pre>Iso-concentration map of 1,1,2-trichlorotrifluoroethane</pre>	19
2-6	Approximate sampling locations	20
4-1	Regional surficial geology	32
4-2	Generalized stratigraphic column	34
5-1	Hydrogeologic cross section transects	40
5-2	Hydrogeologic cross section A-A'	41
5-3	Hydrogeologic cross section B-B'	42
5-4	Top of bedrock (elevations)	44
5-5	Top of shale (elevations)	46
5-6	Groundwater elevations in shallow aquifer	52
6-1	Concentrations of volatile organic compounds -	60
9-1	Proposed investigation areas for Phase II site investigation	73

EXECUTIVE SUMMARY

This report summarizes the results of the Phase I site remedial investigation performed for the Illinois Environmental Protection Agency (IEPA) by John Mathes and Associates, Inc., in the City of Morrison, Illinois. This investigation was prompted by the discovery of trichloroethene (TCE) in the city water supply wells at Morrison during a sampling inventory of municipal water supplies by the IEPA Division of Public Water Supplies on December 3, 1986. This report presents relevant information from the field activities performed during the investigation, identifies data gaps, and preliminarily screens potential remedial actions to address the presence of TCE in the city water supply.


PHASE I REMEDIAL INVESTIGATION REPORT CITY OF MORRISON MORRISON, ILLINOIS

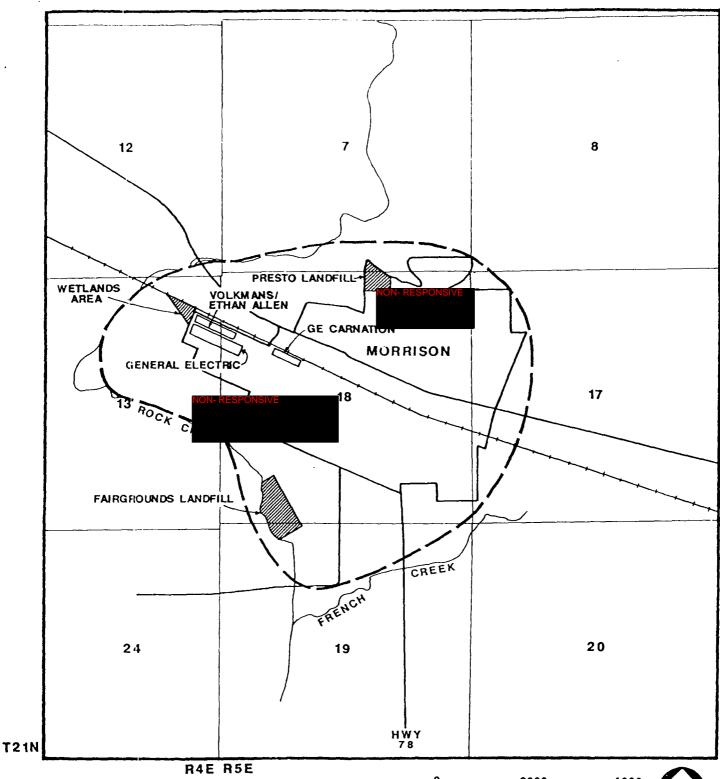
1 INTRODUCTION

1.1 General

This report summarizes the results of the Phase I site remedial investigation performed for the Illinois Environmental Protection Agency (IEPA) by John Mathes and Associates, Inc., (Mathes) in the City of Morrison, Illinois. The scope of the site investigation and all techniques and methodologies employed during on-site field activities are described in the Site Investigation Work Plan submitted by Mathes to the IEPA on June 3, 1987. On-site field and data collection activities were performed from May 5 to July 3, 1987.

The City of Morrison is located in the northwestern portion of Illinois near the center of Whiteside County (Figure 1-1). The site is shown on the Morrison 7.5-minute topographic quadrangle map distributed in Township 21 North, Ranges 14 and 15 East. The investigation area is bordered on the southwest, west, and northwest by Rock Creek; on the south by the Fairgrounds; on the east by Jackson Street; and on the north by the quarry and Kelly Park. Figure 1-2 is a map of the investigation area and pertinent cultural features.

SCALE IS VARIABLE


(USGS, 1985)

John Mathes & Associates, Inc.

SITE LOCATION MAP

12872832

FIGURE 1-1

EXPLANATION

- - APPROXIMATE AREA OF INVESTIGATION

24 SECTION NUMBERS

John Mathes & Associates, Inc.

APPROXIMATE AREA OF
INVESTIGATION
CITY OF MORRISON, ILLINOIS

12872832

FIGURE 1-2

Pertinent features within the City of Morrison include several private residences, the General Electric plant, the General Electric Carnation (GE Carnation) plant, the Volkmans/Ethan Allen facility, and several landfills. Residences served by private water supply wells are located northwest and southwest of the city.

1.2 Background information

The municipal water supply of Morrison has been supplied with water from three pumping wells that draw groundwater from deep bedrock formations, which include the St. Peter Sandstone and the Prairie du Chien Dolomite. These pumping wells are City Well Nos. 1, 3, and 4. A fourth deep well, City Well No. 2, has not been used since December 1985.

from City Well Nos. 1, 2, and 3 were reported to contain concentrations of trichloroethylene (TCE) in the parts per billion range. Reviews of historical records and interviews with city personnel conducted by the IEPA have identified potential TCE source areas in and around the City of Morrison.

Past disposal of industrial wastes, including TCE, has potentially occurred at five mixed waste landfills or disposal sites in the Morrison area. In addition, a 1939 aerial photograph obtained from the County Highway Department in

Morrison shows a scarred area (a potential dumping site) under what is now the northwest corner of the General Electric building across from the Volkmans/Ethan Allen property.

The five areas where mixed waste disposal may have occurred are Presto Landfill, Quarry Landfill, Fairgrounds Landfill, Whiteside County Landfill, and the Wetlands Area. Only the Presto and Fairgrounds landfills and the Wetlands Area are considered in this project. These are shown in Figure 1-2. The Whiteside County Landfill is currently in operation and is being continually monitored according to Resource Conservation and Recovery Act (RCRA) regulations and is, therefore, not considered in this project. The Quarry Landfill is being considered under a separate investigation by the IEPA and is also not considered in this project.

The following is a brief historical summary of operations at all five landfills taken from Tapson (1987).

- The Presto Landfill is the oldest landfill in Morrison and is reported to have been closed approximately 30 to 35 years ago. It was used for disposal of mixed waste and may include industrial wastes. It is named for the Presto ballfield built on top of it.
- 2. The Quarry Landfill operated from approximately 1958 until 1967 and was used as a mixed waste landfill. It is located approximately 1.5 to 2.0 miles north of Morrison and is named for an inactive quarry.
- 3. The Fairgrounds Landfill opened when the Quarry Landfill closed and operated for approximately eight to ten years. It closed in 1974 after the Whiteside County Landfill opened. It is named for the fairgrounds (two softball fields) built on the landfill.
- 4. The Whiteside County Landfill is located approximately three to five miles east of Morrison. It is an active landfill and has been in operation since 1971.

5. The Wetlands Area is not truly a landfill, but may have been used for the disposal of industrial solvents that reportedly included TCE. It is named for its wet nature and its ability to support wetlands vegetation.

review and discussion with city officials, it possible that each of the four mixed-waste landfills may have accepted TCE and other industrial wastes for disposal. officials also believe it to be possible that TCE may have been disposed of in the Wetlands Area, behind Ethan Allen and General Electric. Previous owners of the General Electric facility include Liquid Carbonic Corporation and Herman Nelson, a private individual, who may have used the Wetlands area as a The Wetlands disposal site. area is currently owned by Volkmans/Ethan Allen and is located adjacent to their manufacturing facility.

According to City of Morrison and IEPA sources, TCE may have been disposed of in these landfills over the years (Newman, 1987). A 103-C Form (Notification of Hazardous Waste Site) filed by General Electric with the IEPA on June 1, 1981, lists the disposal of approximately 62,700 gallons of waste solvents, which may include TCE, at the Whiteside County Landfill.

TCE contamination of the city water supply wells at Morrison was discovered during a sampling inventory of municipal water supplies by the IEPA Division of Public Water Supplies (Keller, 1987) on December 3, 1986. City Well Nos. 1, 3, and 4 were sampled and analyzed for volatile organic

compounds by Method 624. City Well No. 2 has been inoperative since December 1985 and, therefore, was not sampled in December 1986.

During the December 3, 1986, sampling event TCE was detected in City Well Nos. 1 and 3 at parts per billion concentrations. The wells were resampled on December 12, 1986; TCE was again detected in the samples. The use of City Well Nos. 1 and 3 was discontinued on December 13, 1986, pending further investigation. Because of these results, the City of Morrison contracted Layne-Western of Aurora, Illinois, to install a pump for testing City Well No. 2. The test pump was installed to obtain a groundwater sample and to check the recharge rate of the well. TCE was detected in the groundwater sample obtained from City Well No. 2 on February 3, 1987. Because contamination was detected in this sample and the well had a low recharge rate, the test pump was removed on February 5 and 6, 1987.

Subsequent to the findings of the IEPA sampling event on December 3, 1986, a meeting was held among Morrison city officials, the IEPA, and representatives of General Electric on December 12, 1986. The topic of this meeting was an underground TCE tank that had been removed from the General Electric property during the summer of 1986. Soil samples were not obtained during the tank excavation and removal operations to document that the tank had not leaked. The IEPA, therefore, initiated a subsurface investigation to collect soil samples around the tank vault.

On December 19, 1986, the Physical Measurement Unit of the IEPA drilled two boreholes through the excavated TCE split samples with The IEPA General Electric's consultant, O. H. Materials, Inc. The IEPA analyzed the samples for volatile organic priority pollutants. Ο. Η. Materials analyzed the samples for TCE only. Five soil samples were collected: three from Borehole No. 1 at depths ranging up to 15 feet below ground surface, and two from Borehole No. 2 at depths to 15 feet below ground surface. Borehole 1 was located at the western edge of the excavated tank area; Borehole 2 was located at the eastern edge. Water and soil samples from the pond behind Volkmans/Ethan Allen building in the Wetlands Area were also collected at this time and analyzed by O. H. analyzed only the water sample. Materials: the IEPA The results of the analyses were obtained from IEPA files and are presented in Table 1-1. Measurable concentrations of TCE were found in the soil samples analyzed by O. H. Materials, but not by IEPA. TCE concentrations measured by O. H. Materials in the soil ranged from non-detectable to 526 micrograms per kilogram (ug/kg). Water from the pond behind Volkmans/Ethan Allen was found to contain TCE at 6.0 micrograms per liter (ug/L) by IEPA, and 6.77 ug/L by O. H. Materials.

Table 1-1

TRICHLOROETHYLENE CONCENTRATIONS IN WATER AND SOIL FROM SITE OF GENERAL ELECTRIC'S TCE TANK

CITY OF MORRISON, ILLINOIS DECEMBER 19, 1986

		TCE (Concentration
Sampling Location	Units	IEPA**	O H Materials*
Water; pond behind Volkmans	ug/L	6.0	6.77
Soil; edge of pond behind Volkmans	ug/kg	ns	526.0
Soil; B-1 at 10.0-11.6 feet	ug/kg	ND	50.7
Soil; B-1 at 11.6-13.4 feet	ug/kg	ИД	ND
Soil; B-1 at 13.5-15.0 feet	ug/kg	ИD	ND
Soil; B-2 at 11.0-13.5 feet	ug/kg	ND	28.2
Soil; B-2 at 13.5-15.0 feet	ug/kg	ND	98.3

Detection limits: Soil - 25 ug/kg, water - 0.1 ug/L.

** Detection limits: Soil - 1000 ug/kg, water - 1.0 ug/L.

B-1 = Boring number in TCE tank excavation.

NS = Not sampled.

ND = Not detected.

Source: IEPA, 1987.

1.3 Remedial investigation summary

The primary objective of this Remedial Investigation is to evaluate the nature and extent of environmental contamination at the Morrison public water supply well field (City Well Nos. 1, 2, and 3). This investigation was directed at identifying the source or sources of TCE contamination detected in these water supply wells. The scope of the project included:

- o performing a record search by reviewing existing data and acquiring additional information relevant to past waste disposal practices near the city wells;
- o reviewing existing reports and data to identify general regional and site hydrogeologic conditions;
- o performing a soil gas survey to locate potential contaminant sources;
- o installing, developing, and sampling eight Mathesinstalled monitoring wells to measure the extent of groundwater contamination;
- o sampling, on discrete intervals, one deep monitoring well installed by Mathes adjacent to the city well field to measure the vertical gradient of contamination;
- o sampling City Well Nos. 1, 3, and 4 and the GE Carnation well for the presence of volatile organic compounds;
- o performing field groundwater quality tests on collected samples (i.e. pH, temperature, specific conductivity, oxidation/reduction potential) to ascertain whether proper development of the well had occurred prior to sampling;
- o developing and submitting remedial action alternatives that may be implemented at the site. (As part of this evaluation, the feasibility of extending the cement grout around City Well Nos. 1 and 3 was examined.);

- o developing a map of private drinking water wells in the area near the identified waste disposal areas; and
- o collecting up-gradient and down-gradient water and sediment samples from Rock Creek, which runs adjacent to the city, to determine the chemical quality of water flowing around the site.

These objectives were met as described below. Any changes to the planned scope due to conditions other than anticipated are also described.

- 1. Selected published and open-file hydrogeologic and environmental information was reviewed and incorporated into this report.
- Site investigation work plan, sampling plan, and health and safety plan documents were prepared and issued to the IEPA in June 1987.
- A soil gas survey across specified areas around the city was performed in May 1987 in an attempt to identify sources and/or plumes of organic contamination.
- 4. A private well survey with the IEPA was performed at selected locations around the city in June 1987.
- 5. A subsurface exploration program consisting of eight geologic test boreholes ranging in depth from 22 to 239 feet was performed during June and July of 1987.
- 6. Two shallow and five deep groundwater monitoring wells were installed for the determination of piezometric levels and collection of groundwater samples. Variations from the original work plan are as follows:
 - o one well, G106D, was intended to be a deep, bedrock well, but was completed at a depth of 22 feet instead of 125 feet because the water table was encountered much shallower than anticipated;
 - o borehole G105D was drilled to a depth of 48 feet instead of the proposed depth of 125 feet because the hole collapsed in the bedrock at that depth;

- o borehole G104D was drilled to a total depth of 50 feet instead of 125 feet because the water table was encountered much shallower than anticipated;
- o borehole G102D was drilled to a total depth of 82 feet instead of 200 feet because the hole squeezed at 72 feet; and
- o borehole G101D was drilled to a total depth of 239 feet because shale was encountered deeper than anticipated.
- 7. Discrete interval groundwater samples from one deep borehole, G101D, were collected and analyzed for volatile organic compounds.
- Groundwater samples from all Mathes-installed monitoring 8. wells except G103S, which proved to be dry, were collected and chemically analyzed for HSL compounds by Method 624. Groundwater quality tests were conducted prior collecting samples. Groundwater samples were collected from City Well Nos. 1, 3, and 4, and the well located at the GE Carnation plant. Two surface water and sediment samples were collected from Rock Creek and one from the pond behind Ethan Allen. All groundwater and surface samples were analyzed for HSL volatile organic compounds by Method 624.

1.4 Overview of report

This report summarizes the results of the Phase I Remedial Investigation. Included in the report are the results of the field investigation, the data and hazards references, supplemental information and analytical results. The results of the field investigation, data and hazards assessment, references, and supplemental information contained in Volume I of this report. Volume II contains laboratory results from Gulf Coast Laboratory.

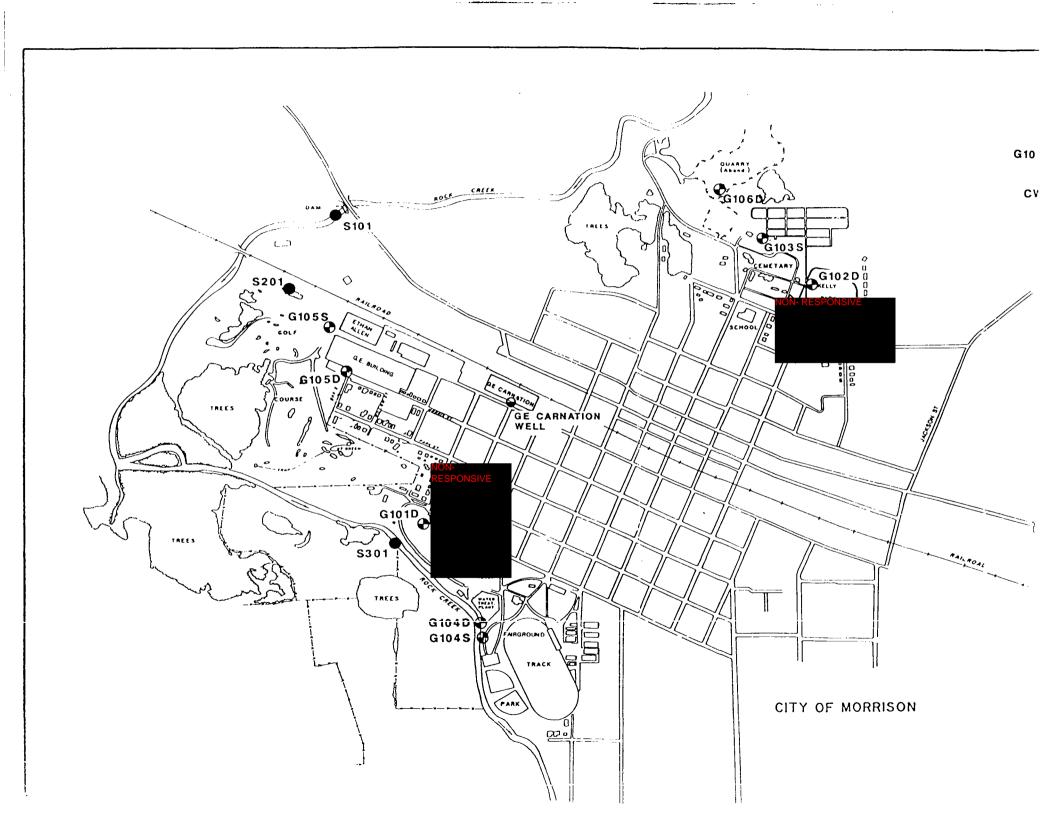
The primary purpose of this report is to present relevant information from the field activities, identify data gaps, and preliminarily screen potential remedial actions.

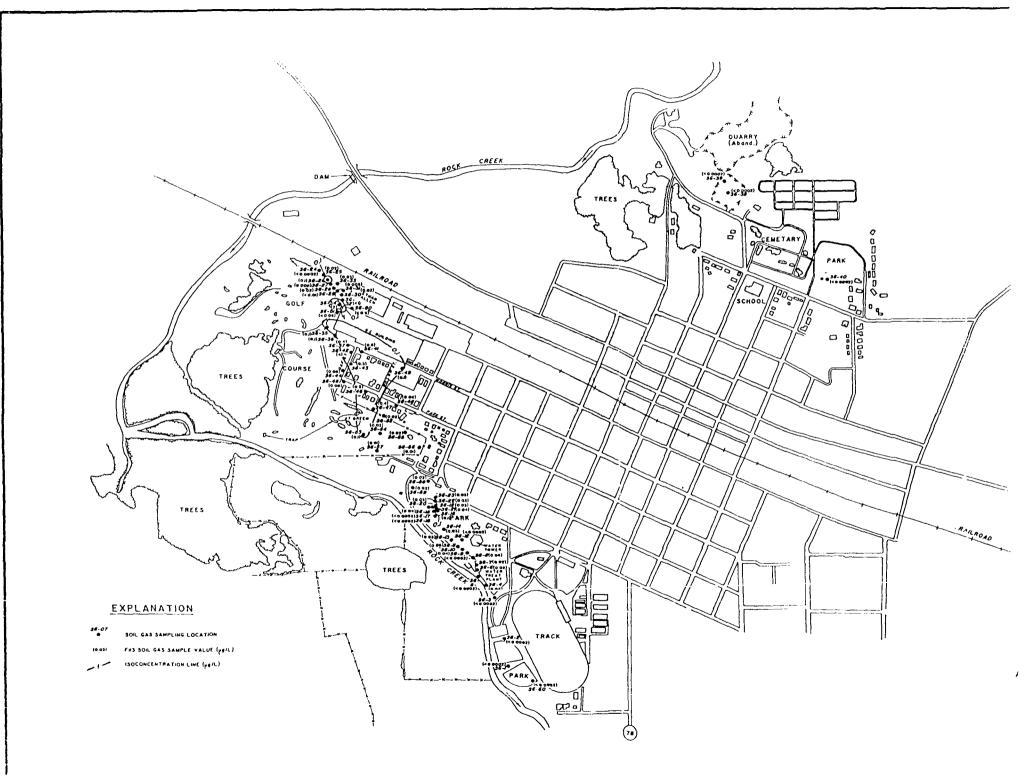
2 INVESTIGATION SUMMARY

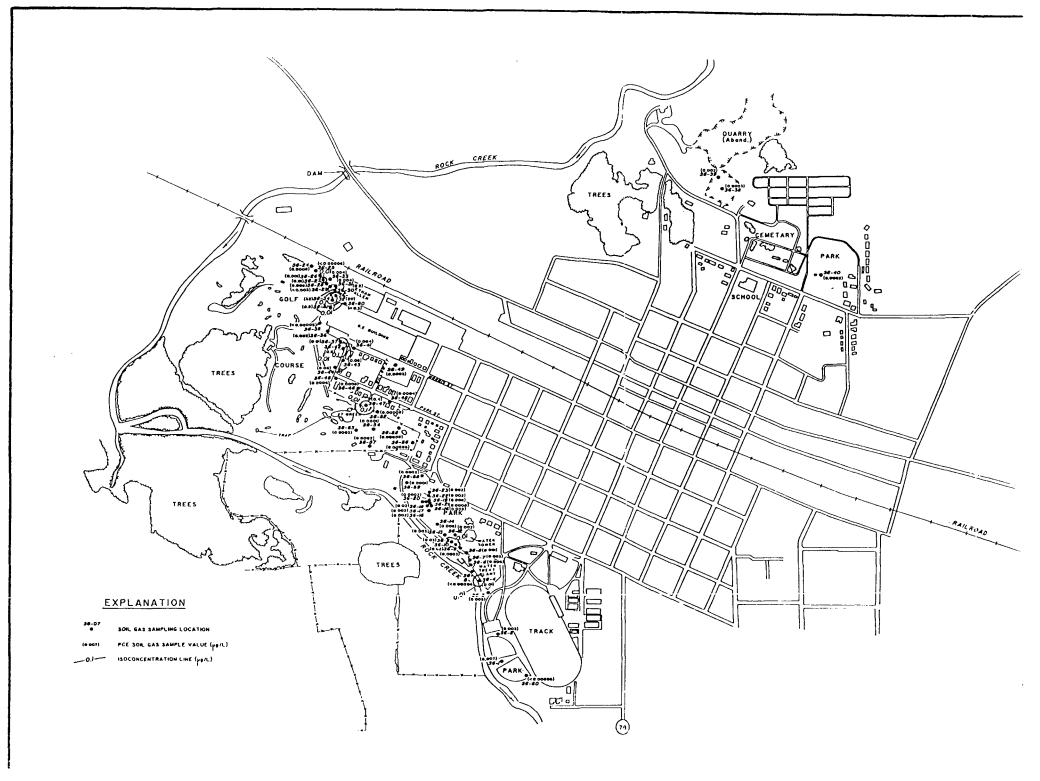
The site investigation was performed according to the scope of work as described in Section 1.3 of this report. The site investigation incorporated non-intrusive (soil gas survey and surface water and sediment sampling) and intrusive (subsurface geologic investigation and groundwater sampling) techniques in an attempt to identify potential source areas contributing to contamination of the city well field (City Wells 1, 2, and 3). The following sections briefly describe the techniques followed for conducting the specific investigations. More thorough descriptions of the techniques may be found in the Site Investigation Work Plan submitted to the IEPA on June 3, 1987.

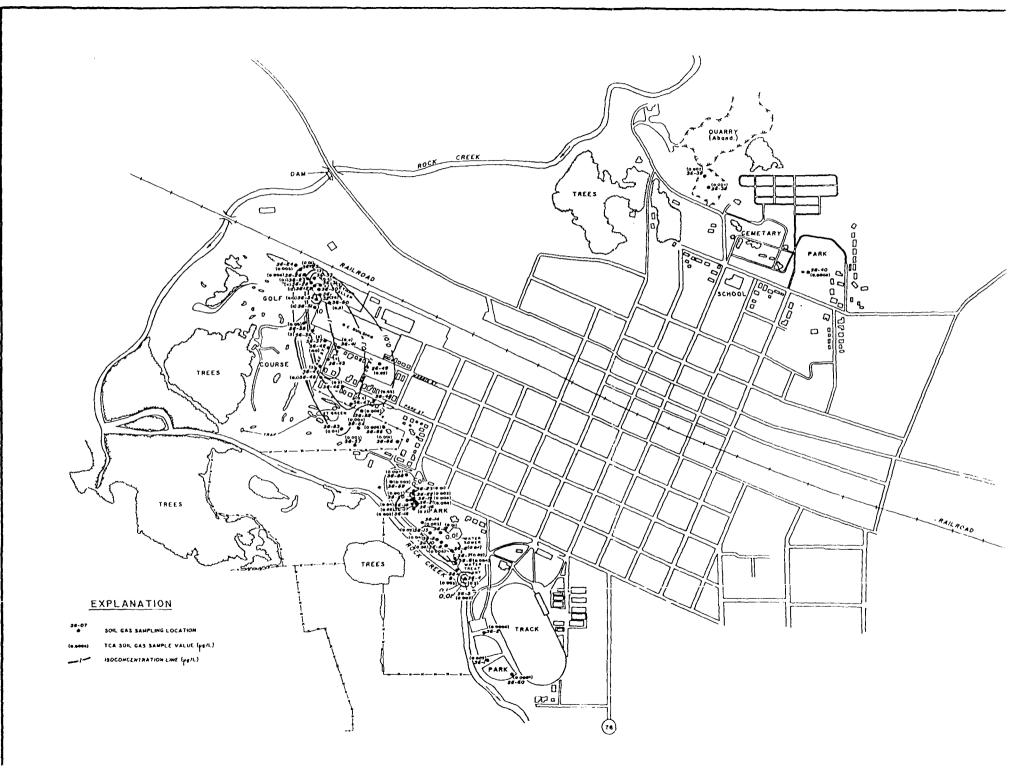
2.1 Soil gas investigation

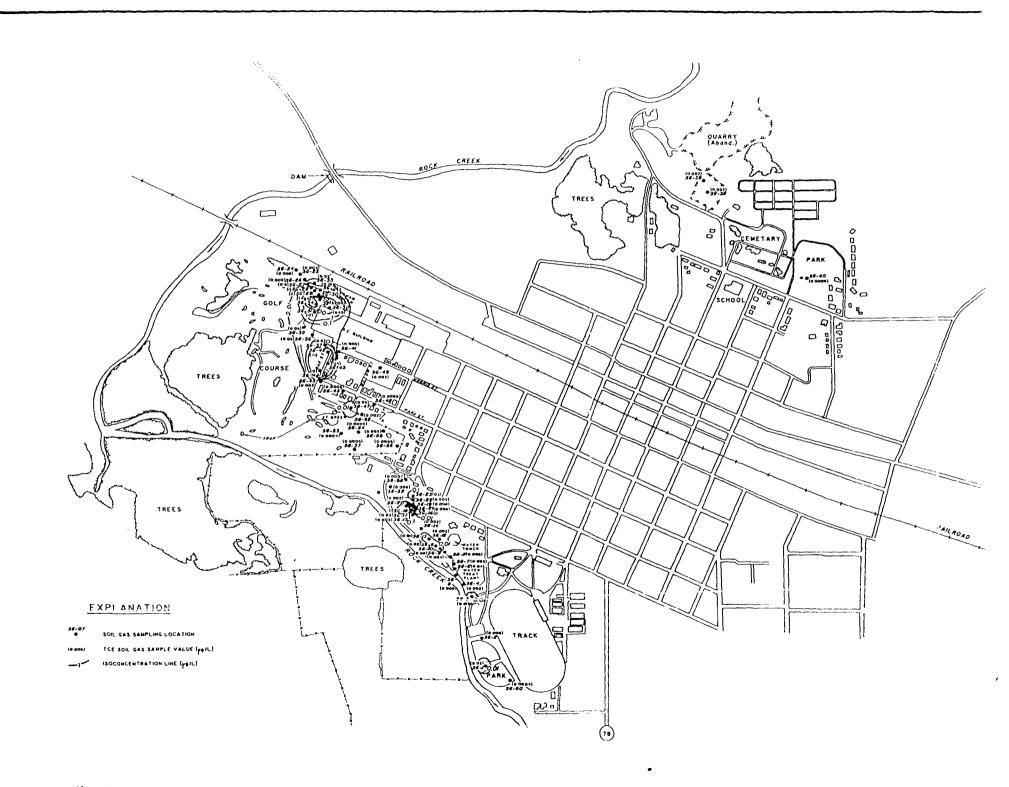
A soil gas investigation was conducted at the Morrison Site on May 5-8, 1987, by Tracer Research Corporation (Tracer) of Tuscon, Arizona, under subcontract to Mathes. The objective of this investigation was to provide information that would delineate potential sources and areas of volatile organic compound concentrations in the soil. Soil gas samples were collected at 60 locations around the city at depths ranging from two to five feet (depending on soil type and presence of water).


Analyses by Tracer were made for TCE, trichlorotrifluoroethane (F-113), 1,1,1-trichloroethane (1,1,1-TCA), and tetrachloroethene (PCE).


The results of the soil gas survey, as shown on Figures 2-1 through 2-6, indicate a potential source area may be located at the northwest corner of the General Electric building; a possible plume was defined trending southeast from this location. Other isolated soil gas anomalies were reported by Tracer, but obvious trends are not apparent.


highest concentrations detected at this potential The source area were TCE at 5700 and 4800 ug/L in the soil vapor. sampling These measurements at locations were corresponding HNU readings of 500 and 100 needle deflection units, respectively. TCE concentrations dropped off rapidly as away from the possible source distance area increased. Concentrations detected in the soil gas samples at the landfilled areas for each of the compounds analyzed did not exceed 1.0 ug/L. The soil gas investigation report prepared by Tracer Research Corporation is included in Appendix A of this report.


2.2 Drilling


A total of eight geologic test boreholes, ranging in depth from 22 to 239 feet, were drilled by Mathes during the hydrogeologic investigation. At the completion of test

drilling activities, groundwater monitoring wells were installed in each borehole. The approximate location of each monitoring well is illustrated in Figure 2-6.

The geologic test boreholes were advanced using air rotary drilling methods. A drilling subcontractor, Earth Scientists, Inc., of St. Louis, Missouri, provided the exploration performed the actual drilling. equipment and The site supervisor, on-site geologist, and health and safety officer were provided by Mathes. The boreholes were logged observation of the drill cuttings by the on-site geologist but samples were not collected. The geologic sequence for each test borehole is summarized on the appropriate geologic log contained in Appendix B. Interpretations of the geology were made by the on-site geologist and are based on the performance of the equipment and the nature of the cuttings brought to the surface by the drilling tools. The transition zone between lithologics appears to be gradual. Therefore, the field data represent both factual and interpretative information.

2.3 Groundwater monitoring well construction

Following drilling activities, groundwater monitoring wells were constructed in each borehole. The monitoring wells consist of two-inch diameter, No. 304 stainless steel screen and riser pipe. Where possible, Schedule-40, flush-thread

coupled, PVC pipe was utilized above the water level to complete the well to the surface. A maximum of fifteen feet of screen with machine-cut 0.010-inch slots was used in each borehole. Only 10 feet of screen was used to construct monitoring well Gl04S because of the shallow level of the water table. Stainless steel riser was emplaced above the screen to the surface, except at boreholes Gl02D and Gl04D where PVC riser was used above 10 feet of stainless riser.

Depths of screened intervals in the wells were chosen so that the most important stratigraphic/hydrologic units at the site could be monitored. Some variations from the proposed intervals occurred screened as а result of subsurface conditions at the site. Monitoring well G102D was intended to be screened 125 feet deep, but the hole caved at 72 feet and the deepest the well could be set was 82 feet. The screened interval for G103S was intended to intercept the shallow water in the near-surface soils; however, after constructing the well, the hole was found to be dry. The screened intervals for monitoring wells G104S and G105S were intended to intercept the shallow water in the surficial soils and were set accordingly. Monitoring well G105D was intended to be set below the water table in the bedrock, but the hole caved and the well was set as an interceptor well in the bedrock at a screen interval of 32.2 to 48.1 feet below ground surface. The screened interval for monitoring well G106D was set as intended to intercept the water table in the rock. Monitoring well G101D was set at the

most chemically impacted interval, as determined from the discrete interval sampling, which was in the bedrock at a screen interval of 223 to 239 feet below ground surface.

In each monitoring well, the borehole annulus was filled with filter sand from the base of the screen to three feet above the top of the screen. Above this sand pack, the borehole annulus was first sealed with a bentonite layer three feet thick and then filled to the surface with The wells were completed at the bentonite-cement grout. surface with above-ground, locking well protectors. Construction diagrams for all Mathes installed monitoring wells are presented in Appendix C.

2.4 Discrete-interval groundwater sampling

Discrete-interval groundwater sampling was performed in monitoring well GlolD on June 20-21, 1987, using a dual straddle packer sampling system. The purpose was to identify the zone of greatest organic impact by sampling isolated intervals of groundwater.

The dual straddle packer sampling system consists of two inflatable rings placed above and below a section of the well screen. Discrete intervals of groundwater were collected starting at a depth of 237 feet below ground surface. The samples were collected at 15 to 25 foot intervals from that starting point to a depth of 30 feet below ground surface. The

sampling depth intervals and elevations are presented in Table 2-1. Six samples were collected. Samples were analyzed by Gulf Coast Laboratories, Inc., (Gulf Coast) of University Park, Illinois, for HSL volatile organic compounds by Method 624.

2.5 Composite groundwater sampling

On June 29-30, 1987, groundwater samples were collected from the Mathes-installed monitoring wells, from the GE Carnation well, and from City Well Nos. 1, 3, and 4. Prior to obtaining the samples, the Mathes field personnel measured the pH, specific conductivity, temperature and oxidation-reduction potential to verify static conditions of the formation water prior to sampling. The results of these field tests are included in Appendix D of this report.

Samples were collected using a clean, Teflon bailer. Samples were obtained within 24 hours of well development, cooled to 4° C immediately after collection, and shipped to the laboratory on the day of collection. The well development and water sampling forms are in Appendix D of this report.

Gulf Coast provided the sample containers and the appropriate preservatives. Strict chain-of-custody procedures and documentation were followed. The chain-of-custody records are on file with the IEPA.

Section 6 of this report is a discussion of the results of this groundwater sampling effort.

Table 2-1

DEPTH INTERVALS OF DISCRETE-INTERVAL GROUNDWATER SAMPLING

CITY OF MORRISON, ILLINOIS

JUNE 20-21, 1987

Sample Number	Depth* (feet)	Elevation** (feet)
G101D-1	234-211	389.9-412.9
G101D-2	213-190	410.9-433.9
G101D-3	193-170	430.9-453.9
G101D-4	153-130	470.9-493.9
G101D-5	113- 90	510.9-533.9
G101D-6	53- 30	570.9-593.9

^{*} Below ground surface
** Above mean sea level

Source: Mathes, 1987.

2.6 Surface water and sediment sampling

Surface water and sediment samples (sample sets) were collected from Rock Creek and the pond behind Volkmans/Ethan Allen at the locations shown in the sample location map (Figure 2-6). The samples obtained from Rock Creek include: one sample set from an up-gradient location (S101), and two sample sets from down-gradient locations (S301 and S302). One sample set was obtained from the pond (S201).

The water samples were collected using a clean, Teflon, point-source bailer so that a composite sample could be obtained. Field measurements, including pH, specific conductance, temperature, and dissolved oxygen, were made prior to collecting the sample. The samples were collected from the deepest part of the water accessible by wading.

The sediment samples were collected using a modification of USEPA Method II-4; Sampling Sludge or Sediments with a Hand Corer (USEPA-600/4-84-076, 1984). An undisturbed sample was collected so that depositional information could be preserved. samples were transferred into a sample jar Teflon-lined cap, placed into a cooler and cooled to 4°C. The samples were then shipped to Gulf Coast following proper chain-of-custody procedures. Copies of the sampling documentation are in Appendix E ο£ this report. Chain-of-custody records are on file with the IEPA.

2.7 Private well survey

On July 2, 1987, personnel from Mathes and the IEPA conducted a survey of private wells located in the vicinity of the City of Morrison. The survey included contacting owners of the wells and obtaining information about the construction and usage of the wells. Table 2-2 presents a list of the owners contacted, the locations of the wells, and any information supplied by the owner.

2.8 Miscellaneous field tests and measurements

The miscellaneous field tests and measurements listed below were performed by Mathes environmental personnel or Mathes subcontractors during the course of the site investigation.

- Geologic test borehole/monitoring well elevations and creek sampling point elevations were measured by surveying to 0.01-foot vertical accuracy. L. F. Van der Schaff Surveyors of Morrison, Illinois, performed the survey. Horizontal control was not surveyed.
- 2. Land surface and top of the well riser pipe and steel protector casing at each Mathes monitoring well were also surveyed by L. F. Van der Schaff Surveyors. The elevations of the top of the riser pipe and protector casing, and the creek sampling locations were surveyed to the nearest 0.01 foot. Land surface elevations were surveyed to 0.1 foot accuracy.
- 3. The depth to groundwater was measured at the time of completion of each borehole, after well installation, and prior to well development and sampling.
- 4. The total depths of the wells were measured to the nearest 0.1 foot using a clean, weighted tape.

Table 2-2

PRIVATE WELL SURVEY LIST

CITY OF MORRISON, ILLINOIS JULY 2, 1987

Location Number	Owner's Name/Address	Approximate Location	Well Information Supplied by Owner
NON- RESPONSIVÉ			Drilled Well TD-40' Basement Pump Rusted Tested by Chicago-EPA Tested by Health Dept.
			Well TD-Unknown Well Located by Barn (Northside)
			No Well Information
			No Well Information?
			Well TD-Approximate-
			Cased-depth unknown
			No Well Information?
			No well information
			New Well 11 or 12 years old

TD = Total depth of well.

Note: Wells surveyed by Kerry Keller of IEPA and Craig Maxeiner of John Mathes & Associates, Inc., on July 2, 1987.

3 SAMPLE ANALYSIS

Groundwater samples for chemical analysis were collected from all wells except GlO3S, which did not yield sufficient water. Soil samples were not collected from any location.

3.1 Groundwater sample chemical analysis

The various types of groundwater samples were analyzed differently as described below.

3.1.1 Discrete-interval groundwater samples

The six discrete-interval groundwater samples collected from monitoring well GlOlD on April 29, 1987 were analyzed by Gulf Coast for HSL volatile organic compounds. These samples were analyzed according to USEPA Method 624 (GC/MS).

3.1.2 Composite groundwater samples

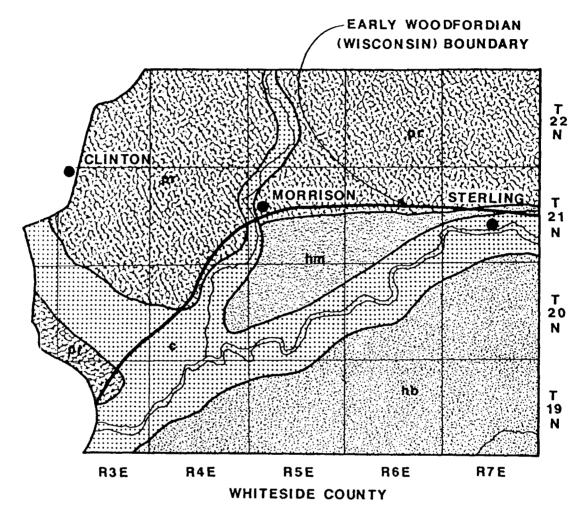
Gulf Coast analyzed the groundwater samples collected during this investigation from the eight monitoring wells installed by Mathes, the GE Carnation well, and City Well Nos. 1, 3, and 4. In addition, a duplicate sample (G105D-DUP) from monitoring well G105D, two trip blanks, and one bailer (sampling) blank were analyzed for QA/QC purposes.

The groundwater samples collected from the monitoring wells installed by Mathes were analyzed for HSL compounds. USEPA Method 624 (GC/MS) was followed for the organic compounds and USEPA Method 6010 (ICAP) was followed for the inorganic elements. The samples from the city wells and from the GE Carnation well were analyzed for only HSL volatile organic compounds, according to USEPA Method 624 (GC/MS). In addition, a National Bureau of Standards (NBS) library search was performed to identify any additional volatile organic compounds detected during the analysis. The analytical results are presented in Section 6 of this report.

General water quality parameters were measured prior to and during sampling events by Mathes field personnel.

3.2 Surface water and sediment sample chemical analysis

The surface water and sediment samples collected from Rock Creek and from the pond behind Volkmans/Ethan Allen on June 30, 1987, were analyzed by Gulf Coast for HSL volatile organic compounds using USEPA Method 624 (GC/MS).


4 REGIONAL HYDROGEOLOGY

The hydrogeology in the vicinity of Morrison and throughout Whiteside County consists of a complex relationship between surficial unconsolidated deposits and underlying bedrock. Multiple episodes of erosion and deposition caused by several retreats throughout glacial advances and the area interacted to form the present surface and subsurface (Local and site specific conditions pertaining to the Morrison site are presented in Section 5-Site Hydrogeology.)

4.1 Geomorphology

The City of Morrison is physiographically situated in the Rock River Hill Country Area of the Till Plains Section of the Central Lowland Province. Morrison is located just north of the Rock River and Green River Lowlands area on the south edge of an Illinoian ground moraine. The line that separates the southern lowlands from the northern hills and plains corresponds to an Early Woodfordian (Wisconsin) glacial end moraine as shown, along with the regional geology, in Figure 4-1.

The current geomorphological features in the area have been formed primarily by the advance and retreat of Illinoian, and to a lesser extent Wisconsin, glaciers. These features consist of exposed Silurian dolomite bedrock and thin glacial drift

EXPLANATION

Pr -- PEORIA LOESS AND ROXANNA SILT NOT TO SCALE

HENRY FORMATION hb (SANDS & GRAVELS)

C -- CAHOKIA ALLUVIUM

John Mathes & Associates, Inc.

REGIONAL SURFICIAL GEOLOGY

12872832

FIGURE 4-1

plains to the north of Morrison and outwash sand-andgravel-filled valleys to the south.

4.2 Geology

The uppermost geologic materials in the Morrison area are reported to vary from windblown silts (loess), sands, clays, and glacial drift, to localized areas of exposed bedrock. The Illinoian-stage ground moraine drift (Glasford formation) consists of materials ranging from fine-grained till to sand and gravel. The sand and gravel are glacial outwash valley fill deposits and are locally underlain by a layer of fine-grained till, especially in areas where the bedrock surface elevation is lower than approximately 575 feet (Foster, 1956).

Unconsolidated deposits in the Morrison area range in thickness from a maximum of 100 feet in the upland areas to greater than 200 feet in lowland areas. In the upland areas, as much as 25 feet of Wisconsin loess may overlie bedrock or thin layers of glacial drift.

Figure 4-2 illustrates a generalized stratigraphic section representative of the Morrison area. The uppermost bedrock units are Silurian age dolomites (Niagaran and Alexandrian). These dolomites, which are typically fractured and cherty, are separated from the underlying Cambrian and Ordovician sandstones and dolomites by Ordovician-age Maquoketa shales.

GENERALIZED SECTION OF GEOLOGIC/HYDROLOGIC UNITS

	.c	ROCK CLASSIFICATIO	
٩	ALC /	POCK	AQUIFER/HYDROLOGIC
GRK,	6 /4/C	CLASSIFICATIO	N CHARACTERIZATION
GRAP		1	
	0-605 +	Unconsolidated gracial deft—sitt clay and a mony areas, water- yielding sand and gravel	DEPENDANT UPON THICKNESS. THICKENS TO THE SOUTH GENERALLY AND IN BEDROCK CHANNELS.
	0-350 *	Silurian dolomite (Niogaran-Alexandrian)	USED EXTENSIVELY. CHERTY ZONES. YIELDS DEPENDENT ON THICKNESS & FRACTURES.
	0-210	Maquaketa shale and dolomite	NOT USED AS AN AQUIFER.
	350-380	Galena · Platteville dolomite	USED AS DOMESTIC FARM SUPPLY.
	-{	Glenwood-St Peter sandstone	USED AS DOMESTIC TO INDUSTRIAL SUPPLY.
	0-420 =	Prairie du Chen dolomile and thin sandstone	NOT COMMONLY USED. MAY SUPPLY SMALLER DEMANDS.
	0-175=	Trempealeau dolomile	NOT COMMONLY USED UNLESS IN CONJUNCTION WITH GALESVILLE OR
/1	70-115	Franconia sondstone and shale. Iranton -	MT. SIMON.
	125-180	Galesville sandstone	USED EXTENSIVELY.
	400-450	Eau Claire sandstane and shale	NOT COMMONLY USED UNLESS IN CONJUNCTION WITH GALESVILLE OR MT. SIMON.
	1800 s	M1 Simon scridslone.	UPPER PORTIONS OFTEN USED IN MUNICIPAL & INDUSTRIAL WELLS. WATER MAY BE OF POOR QUALITY (MINERALIZED).
	TO UNKNOWN DEPTHS	Granite	NOT USED AS AN AQUIFER.

Modified from (Foster, 1956)

John Mathes & Associates, Inc.

GENERALIZED
STRATIGRAPHIC COLUMN

12872832

FIGURE 4-2

The Ordovician and Cambrian formations consist of approximately 50 percent sandstones and consecutively lesser percentages of dolomites, limestones, and shales.

In Whiteside County, these formations dip gently to the southwest at approximately 25 feet per mile (Foster, 1956). They remain relatively flat-lying and intact eastward to the Sandwich fault zone in northeastern Lee County.

Based on the log of approximate geologic conditions from the City Well No. 3, the geologic succession is as follows:

Formation or Material	Base Elevation*	Thickness
Glacial drift (Glasford)	92 feet	92 feet
Silurian Dolomite	255 feet	163 feet
Maquoketa Shale	443 feet	188 feet
Galena Dolomite	791 feet	348 feet
St. Peter Sandstone	918 feet	127 feet
Trempealeau Dolomite	1,485 feet	567 feet
Galesville Sandstone	1,620 feet	135 feet

^{*}Above mean sea level.

4.3 Groundwater hydrology

Figure 4-2 illustrates the relationship between the previously described geologic units and the hydrologic units in the vicinity of Morrison. Significant water bearing units include unconsolidated deposits (loess, sand and gravel valley fill, and glacial drift), Silurian-age dolomite, and Cambrian/Ordovician-age sandstones and dolomites.

The unconsolidated deposits and the underlying Silurian dolomites form one hydrologic unit where the fine-grained glacial lodgement till has been eroded or was not deposited. In these areas, the fractured dolomites may be a highly prolific aquifer receiving recharge from the overlying saturated unconsolidated materials. In upland areas where the surficial glacial-related deposits are thin, the unconsolidated materials are usually not an adequate source of groundwater when underlain by lodgement till. The most prolific aquifers in the area are hosted by thick deposits of sand and gravel located along the Rock and Green River valleys, and along the Rock Creek valley south of Morrison. Some groundwater wells in Whiteside County have penetrated 200 to 300 feet of outwash sands and gravels and have allowed safe yields in the range of 600 to 1000 gallons per minute.

Groundwater encountered in the Silurian dolomites (where separated from the overlying water-bearing deposits by fine-grained till) is considered usable for domestic or farm use. The wells must intercept fractures in the dolomites that are water-bearing. The underlying Maquoketa shale is rarely used for a water supply, and then only in areas far to the northeast of Morrison where the Silurian dolomites are not present and the glacial deposits directly sit on fractured shales. For areas in and surrounding Morrison, the Maquoketa shale is considered non-water-bearing and a confining unit.

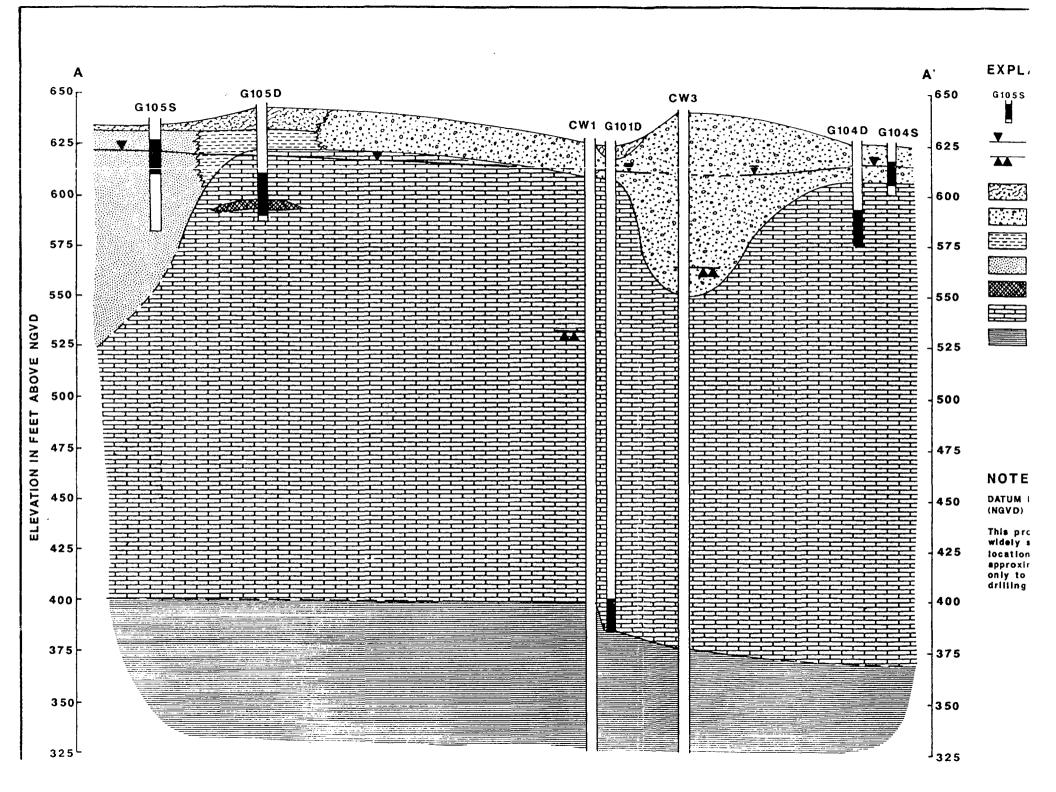
At depths below the Maquoketa shale, several formations are considered prolific aquifers. The most prolific aquifer is the

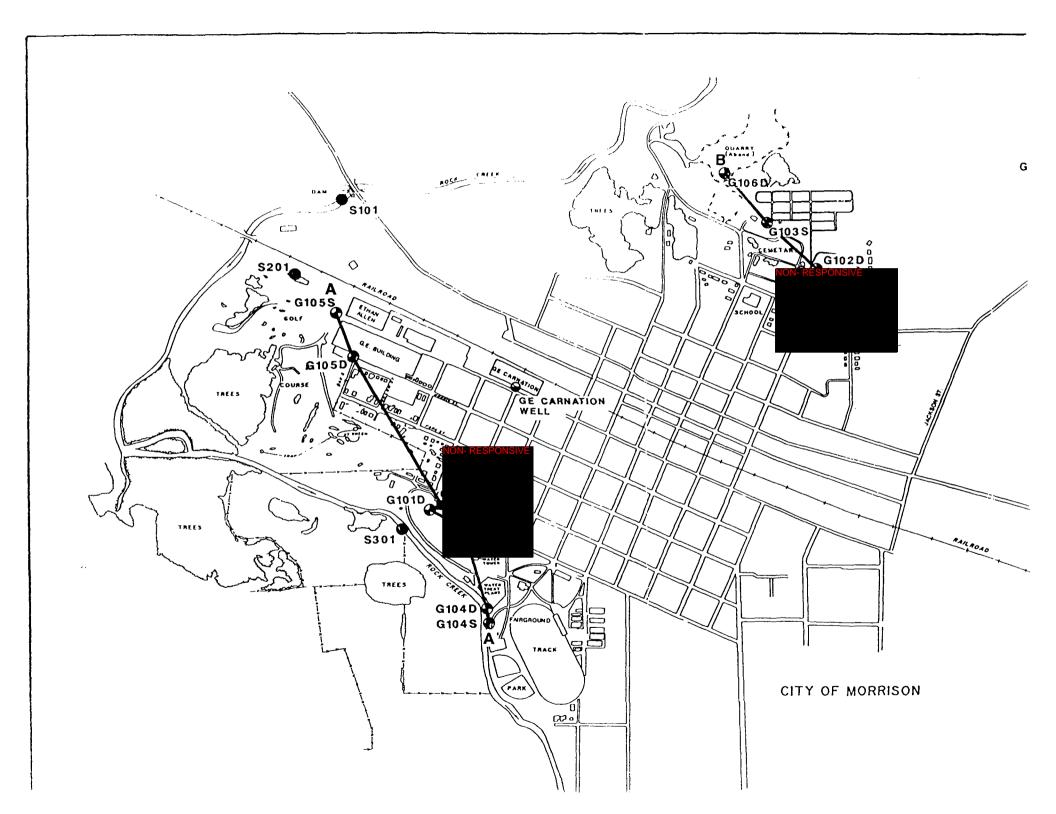
Cambrian-age Ironton-Galesville sandstone. Other formations also considered prolific include, from youngest to oldest, the Ordovician-age Galena-Platteville dolomite, Glenwood-St. Peter sandstone, Trempealeau dolomite, and the Cambrian-age Mt. Simon sandstone. No major confining layer exists in the Cambrian/Ordovician-age formations and in most areas these are considered one hydrologic unit.

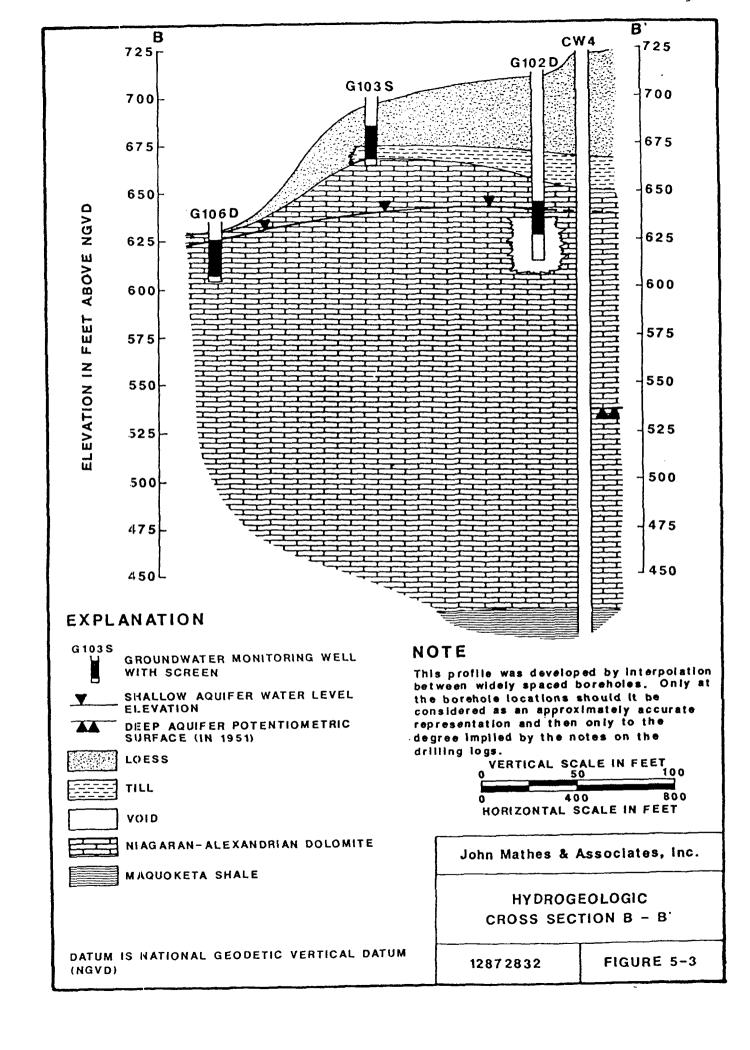
5 SITE HYDROGEOLOGY

5.1 Geology

The shallow geologic sequence in the City of Morrison consists of unconsolidated Pleistocene-age glacial and alluvial deposits overlying a highly irregular Silurian bedrock surface. Bedrock units identified on-site include Silurian-age Niagaran-Alexandrian dolomite overlying Ordovician-age Maquoketa shale.

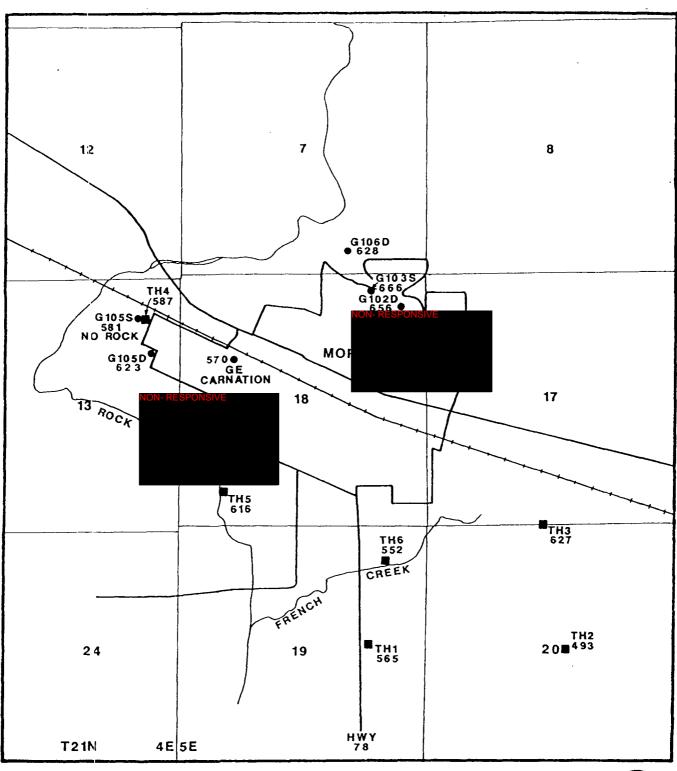

Table 5-1 presents selected monitoring well and geologic data compiled from the monitoring well test boreholes installed by Mathes, from well logs of the city wells and the GE Carnation well, and from six test boreholes drilled by the City in 1954 for the purpose of locating potential water supplies for the city.


Figure 5-1 is a map showing the locations of generalized hydrogeologic cross sections at the site. Cross Sections A-A' (Figure 5-2) and B-B' (Figure 5-3) are oriented approximately northwest-southeast along transects in the southern and northern portions of the city, respectively. In the southern portion of the city, the uppermost geologic units are sands and gravels and glacial drift (see Figure 5-2). The glacial drift is reported to include silts and clays as well as sand and gravel deposits (Foster, 1956). (Because samples were not obtained by Mathes during drilling, a distinction cannot be made between sands and gravels of alluvial versus glacial


Table 5-1 MONITORING WELL AND GEOLOGIC INFORMATION CITY OF MORRISON, ILLINOIS JULY, 1987

Well Number	Ground Surface Elev.	Total Depth Elev.	Water Level Elev.*	Top of Rock Elev.	Top of Shale Elev.	Screened Interval
G101D	623.9	384.9 (239)	612.6 (11.3)	607.9 (16)	386.9 (237)	384.9-400.9 16 **
G102D	711.7	612.7 (99)	638.3 (73.3)	656.2 (55.5)	N/A N/A	629.5-645.4 15.9**
G103S	696.7	664.7 (32)	DRY	665.9 (30.8)	N/A N/A	669.2-685.2 16 **
G104S	624.3	600.4 (23.9)	614.4 (9.8)	605.3 (19)	N/A N/A	606.6-617.1 10.5**
G104D	624.6	574.6 (50)	615.5 (9.1)	605.6 (19)	N/A N/A	575.6-591.6 16 **
G105S	634.2	581.2 (53)	621.1 (13.1)	N/A N/A	N/A N/A	610.2-626.2 16 **
G105D	642.1	586.2 (55.9)	619.5 (22.6)	623.1 (19)	N/A N/A	594.0-609.9 15.9**
G106D	632.4	604.4 (28)	622.9 (9.4)	628.4 (4)	N/A N/A	609.9-625.9 16 **
CW 1	625	(-1645)	N/A N/A	610 (15)	400 (225)	
CW 3	640	(-1625)	562 (78)	551 (89)	383 (257)	
CW 4	715	(-1769)	535 (180)	651 (64)	347 (368)	
GE WELL	670	(-1101)	610 (60)	570 (100)	363 (307)	
TH1	640	564 (76)	N/A N/A	565 (75)	N/A N/A	
TH2	645	492 (153)	N/A N/A	493 (152)	N/A N/A	
тнз	635	605 (30)	N/A N/A	627 (8)	N/A N/A	
TH4	635	585.5 (49.5)	N/A N/A	587 (48)	N/A N/A	
тн5	630	600 (30)	N/A N/A	616 (14)	N/A N/A	
тн6	625	552 (73)	N/A N/A	552? (73?)	N/A N/A	

^{* =} Measured prior to sampling.
** = Length of screen interval.
CW 1 = City Well.
G101D = Mathes-installed wells.
N/A = Data rot available.
TH1 = City test borehole.
Note: Elevations are in feet above mean sea level. All numbers in parentheses are in feet below ground surface.

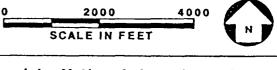


origin at these locations). Bedrock apparently lies below and in contact with the sand and gravel deposits.

Wind blown deposits of fine-grain silt (loess) are the uppermost geologic unit found in the northern portion of the city. These deposits occur on the hilltops in the areas of higher elevation (Figure 5-3). In general, the loess unit ranges in thickness from 25 to 50 feet in this area. The loess is described as a calcareous, brown, clayey silt that contains some traces of sand. Underlying the loess is approximately ten feet of a fine-grained till. The till is described as a brown to red-brown silty clay that is calcareous in nature. The bedrock lies below the till in areas of higher elevation.

Bedrock below the City of Morrison consists primarily of limestone and dolomite units belonging to the Silurian-age Niagaran-Alexandrian dolomite formation. Niagaran-Alexandrian dolomite is described as being light gray to brown in appearance, with abundant cracks and openings, and contains hard chert fragments in many places.

The irregular nature of the top of bedrock across the city can be observed on Figure 5-4. More than 75 feet of relief is present on this surface. The elevation above mean sea level (AMSL) of the bedrock surface ranges from almost 666 feet to approximately 493 feet. As can be seen from Figure 5-4, the bedrock surface is irregular. Using bedrock elevations from Mathes wells G102D (in the northern portion of the site) and G101D (in the southern portion of the site), a slope of

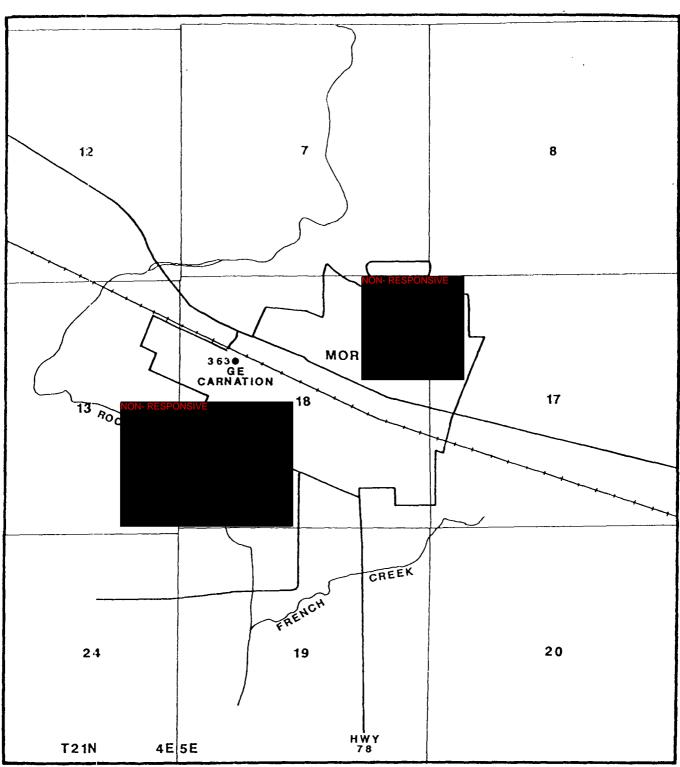

EXPLANATION

• GROUNDWATER MONITORING WELL

● CITY WELL

TH3 1954 TEST BOREHOLE

616 TOP OF BEDROCK ELEVATION
ELEVATIONS ARE IN FEET ABOVE MEAN SEA LEVEL



John Mathes & Associates, Inc.				
TOP OF BEDROCK (ELEVATIONS)				
12872832 FIGURE 5-4				

0.011 feet per feet or 56 feet per mile was calculated across the site.

Regional information (Foster, 1956) suggests that the area in the vicinity of Morrison is part of the ancient drainage system of the Mississippi River and possibly Rock River. The current topography of the bedrock surface has probably been influenced by the major river systems, and the present drainage is a reflection of ancient alluvial or preglacial valleys that have incised the area. For this reason it may be very difficult to predict, without further studies, the topography of the bedrock surface at any location.

Changes in bedrock topography appear to occur in the area just north of Volkmans/Ethan Allen and the General Electric facility, and at City Well No. 3. During drilling operations behind Volkmans/Ethan Allen and the GE facility, Mathes did not encounter bedrock after drilling to an elevation of 581 feet AMSL borehole location G105S. However, bedrock at was encountered in the 1954 Test Borehole No. 4, which apparently drilled in the immediate vicinity of G105S, at was an approximate elevation of 587 feet AMSL (Figure 5-5.) The elevation for the 1954 Test Borehole No. 4 is approximate because it was taken from the Morrison topographic map and not surveyed. Another apparent change in the bedrock surface is in the vicinity of the city well field. Bedrock was encountered in G101D and in City Well No. 1 at elevations of 608 and approximately 610 feet AMSL, respectively, but was encountered at approximately 551 feet AMSL in City Well No. 3 (less than

EXPLANATION

• GROUNDWATER MONITORING WELL

• CITY WELL

387 TOP OF SHALE ELEVATIONS

ELEVATIONS ARE IN FEET ABOVE MEAN SEA LEVEL

John Mathes & Associates, Inc.

TOP OF SHALE
(ELEVATIONS)

12872832 FIGURE 5-5

300 feet away). These fluctuations in elevation indicate the extreme variability of the bedrock surface.

Niagaran-Alexandrian dolomite is underlain The by Ordovician-age Maquoketa shale at elevations ranging from 347 to 400 feet AMSL. Figure 5-5 presents the elevations of the top of the Maquoketa shale formation at those locations in and around the city where data is available. The information suggests that the surface of the shale unit is sloping to the northeast. Using approximate information from City Well No. 4 (in the northern portion of the site) and from City Well No. 1 (in the southern portion of the site), the slope of the Maquoketa shale surface beneath the City of Morrison approximately 0.013 (67 feet per mile). Information reported by Foster (1956) indicates that the Maquoketa shale is dipping southwest at 15 feet per mile on a regional basis, suggesting that the surface of the shale unit at Morrison may represent a local disconformity or a nonconformable erosional surface.

The is considered a confining unit, Maquoketa shale separating the dolomite units above from the dolomite units (Galena-Platteville Formation) below. Information from the city wells indicate the average thickness of the Maquoketa shale in the vicinity of Morrison is about 200 feet. The shale is bluish-gray in color, although in some zones it is reported to be greenish-gray. The Maquoketa formation contains weak zones of shale that are subject to swelling, as well as dense sublithographic zones that are tight and competent. Records from the city wells also report the formation to contain thin

zones of fine to very fine dolmite and dolomitic shale. Both calcareous and non-calcareous shales were reported to be present.

5.2 Groundwater hydrology

The hydrologic units described in this section are based on a very limited data base. Much of the information gathered to date, however, appears to be consistent with the conceptual model of the regional hydrology.

The hydrologic units beneath the City of Morrison include a shallow, unconfined aquifer and a deep aquifer. The shallow includes sands and gravels overlying Niagaran-Alexandrian dolomite in the southern portion of the site, and this aquifer is present in at least the Niagaran-Alexandrian dolomite in the northern portion of the It is not known whether this aguifer (or other aguifers) are present in the surficial soils (glacial drift) overlying this dolomite formation in the northern portion on the site. A deep aquifer is present in the Ordovician and Cambrian rocks below the confining Maguoketa shale unit. The hydraulic characteristics of this aguifer are not known.

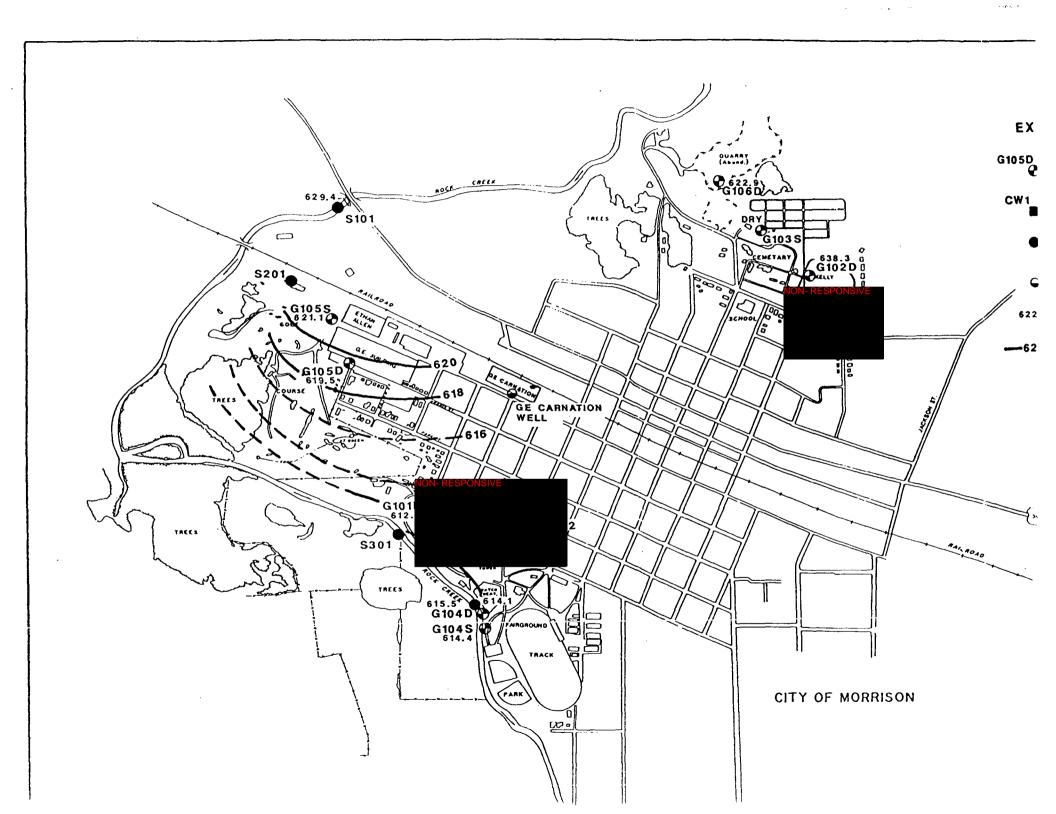
Hydrogeologic Cross Sections A-A' (Figure 5-3) and B-B' (Figure 5-4) illustrate the relationships between groundwater levels and the associated geologic units. Also presented on these cross sections are the groundwater levels measured in the

early 1950's in the city wells. The groundwater levels observed in the early 1950's indicate aquifer conditions in the city wells were under confined, artesian conditions at that time. Table 5-2 presents groundwater level data collected on June 30 through July 3, 1987, from the present monitoring well network and lists the geologic unit monitored by each well.

Based on the information obtained from the monitoring well network and presented in Figure 5-2, there does not appear to be a perched water table in the surficial sand and gravel deposits separate from the shallow unconfined aquifer in the Niagaran-Alexandrian dolomite in the southern portion of the An analysis of water level elevation data indicates a strong degree of hydraulic connection probably exists between the the sand and gravel units and Niagaran-Alexandrian dolomite formation. No confining layer identified as separating the sand and gravel from the bedrock units. Recharge to this shallow aquifer is from direct rainfall infiltration, the areal extent of which is unknown, but is believed to be present over the entire site.

Information is currently insufficient to identify whether a perched water table is present to any extent in the northern portion of the site, where the less permeable silts and clays occur. Groundwater was not encountered during the groundwater sampling event at location G103S, which is screened in the glacial drift (loess and till units). However, groundwater was encountered in the loess at this location during drilling at a depth of 20 feet below ground surface.

Table 5-2 GROUNDWATER DATA*


CITY OF MORRISON, ILLINOIS JUNE 30 - JULY 3, 1987

	Groundwat	cer Levels**		
Groundwater Monitoring Well	Depth Below Land Surface	Elevation***	Screened Interval Geologic Unit	
G101D	11.3	612.6	Lower Niagaran dolomite	
G102D	73.3	638.3	Upper Niagaran dolomite	
G103S	DRY	DRY	Loess	
G104S	9.8	614.4	Sand and gravel	
G104D	9.1	615.5	Upper Niagaran dolomite	
G105S	13.1	621.1	Sand and gravel	
G105D	22.6	619.5	Upper Niagaran dolomite	
G106D	9.4	622.9	Upper Niagaran dolomite	

^{*} Data in feet below ground surface.
** Groundwater levels were measured prior to sampling the wells.
*** Elevations are in feet above mean sea level (AMSL).

The configuration of the groundwater surface for the shallow unconfined aquifer in the southern portion of the site is shown on Figure 5-6. The groundwater surface appears to have a fairly constant gradient to the southeast of 0.003 feet per feet or 16 feet per mile. The actual direction of flow, however, is believed to be towards the creek. Because information is limited in the northern portion of the site, the actual configuration of the groundwater surface across the entire site could be not estimated.

Accurate groundwater flow velocities could not be calculated from the limited amount of information collected during the investigation. However, observations were during the drilling and well development activities that allow assumptions to be made concerning the hydraulic properties of the aquifer. Observations during drilling indicated that large volumes of water were accumulating as the boreholes were advanced, and rapid recharge occurred during well development. Based on these field observations and groundwater parameters obtained from Freeze & Cherry (1979), a value of 0.15 is assumed as the effective porosity and values of 0.28 to 2.8 feet per day are assumed for the hydraulic conductivity. Using these values a groundwater gradient of 0.0031, and groundwater velocity is believed to be in the range of 2.1 to 21.3 feet per year.

6 GROUNDWATER QUALITY

Groundwater samples were collected from eight monitoring wells installed by Mathes, from the GE Carnation well, and from the City Well Nos. 1, 3, and 4 between June 30 and July 3, samples were analyzed by Gulf Coast. The groundwater samples collected from the eight Mathes-installed monitoring wells were analyzed for USEPA Hazardous Substances List compounds (HSL). The groundwater samples collected from the city wells and from the GE Carnation well were analyzed for HSL volatile organic compounds only. In addition, a National Bureau of Standards (NBS) library search was performed to identify any other volatile compounds. Groundwater samples from discrete vertical intervals were collected from monitoring well G101D and analyzed for volatile organic priority pollutant compounds in an attempt to identify the most impacted vertical zone.

6.1 <u>Discrete-interval groundwater samples</u>

A total of five volatile organic compounds, TCE, 1,1,1-trichloroethane (1,1,1-TCA), methylene chloride, toluene, and acetone, were detected in the discrete-interval groundwater samples collected from monitoring well GlOlD. The results of this sampling event are presented in Table 6-1. One of the compounds detected, acetone, was also detected in the trip

Table 6-1 DISCRETE-INTERVAL GROUNDWATER SAMPLING RESULTS VOLATILE ORGANIC COMPOUNDS

CITY OF MORRISON, ILLINOIS JUNE 20-21, 1987

Sample Number	Depth (ft.)	Relative Vapor Conc. (NDU)	Compound	<u>Concentrat</u> Measured	ion (ug/L) Detection Limit
G101D-1	234-211	3	Methylene chloride Acetone TCE Toluene	42 17 B 140 4 J	5 10 5 5
G101D-2	213-190	1.5	Acetone TCE Toluene	11 B 110 2 J	10 5 5
G101D-3	193-170	0	Acetone TCE	15 B 53	10 5
G101D- 4	153-130	0	Acetone 1,1,1-TCA TCE	12 B 5 55	10 5 5
G101D-5	113- 90	0	Acetone TCE	13 B 70	10 5
G101D-6	53- 30	0	Acetone TCE	3 JB 36	10 5
Trip Blank			Acetone	8 JB	10

= needle deflection units measured with HNU.
= Compound was also found in the blank.
= Estimated value, below detection limits.
= Trichloroethene NDU В J

TCE

1,1,1-TCA = 1,1,1-Trichloroethane
NOTE: Only compounds detected in the samples are listed.

Source: Mathes, 1987.

blank and is therefore considered a laboratory contaminant. The other four detected compounds range in concentration from 5 ug/L to 140 ug/L.

Methylene chloride and 1,1,1-TCA were each found in only the discrete-interval one sample during sampling Methylene chloride was detected at a concentration of 42 ug/L from the interval between 211-234 feet. The compound 1,1,1-TCA the interval between detected in 130-153 feet at was concentration of 5 ug/L. Toluene was tentatively identified in two of the samples at concentrations of 2 and 4 ug/L in the intervals from 190-213 and 211-234 feet, respectively.

TCE was detected in all samples collected during the discrete-interval sampling event. In general, the concentrations of TCE increased with depth. The greatest concentrations (110 and 140 ug/L) were measured in the samples collected from 190-213 and 211-234 feet, respectively.

6.2 Composite groundwater samples

Analytical results for the composite groundwater samples are reported separately in the following sections for volatile organic compounds, semi-volatile organic compounds, and inorganic compounds.

6.2.1 Volatile organic compounds

Table 6-2 is a list of the volatile organic compounds detected in the groundwater samples collected from Mathes wells, the GE Carnation well, and City Well Nos. 1, 3, and 4. A total of ten different compounds were identified. Both acetone and methylene chloride were identified in the bailer blank and in one of the two trip blanks. These two compounds are considered laboratory contaminants.

All of the eight remaining compounds were detected in the sample from monitoring well G105D, which is located on the southwest side of the General Electric facility. (Some of these compounds were detected at other locations also.) duplicate sample from G105D contained three of these eight compounds, in similar concentrations. The compounds found in the greatest concentrations include TCE and 1,1,1-TCA. TCE concentrations of 14,000 and 16,000 ug/L were reported. Concentrations of 14,000 and 17,000 ug/L 1,1,1-TCA were detected in the sample and duplicate sample from G105D, Concentrations 1,800 and respectively. of 2,200 1,1-dichloroethene were also measured in the sample duplicate sample from G105D, respectively. Volatile organic compounds were not found in the sample from the shallow monitoring well Gl05S, which is located on the southwest end of the Volkmans/Ethan Allen facility.

TCE was also detected in the samples from monitoring well G101D and from City Well Nos. 1 and 3. Concentrations range

Table 6-2

COMPOSITE GROUNDWATER SAMPLING RESULTS VOLATILE ORGANIC COMPOUNDS

CITY OF MORRISON, ILLINOIS JUNE 29-30, 1987

		Concer	ntra	tion (ug/L)
Sample Number	Compound	Measuı	red	Detection Limit
G101D	Acetone TCE	7 52	J B	10 5
G102D	Acetone	5	JB	10
G104S	(None)	BDL		-
G104D	(None)	BDL		-
G105S	Acetone Methylene chloride	5 3	JB J	10 5
G105D	Acetone Methylene chloride 1,1-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethene 1,2-Dichloroethene Chloroform 1,1,1-TCA TCE Tetrachloroethene	18 26 12 16 1,800 57 2 14,000 14,000	D J D	10 5 5 500 5 5 500 500 5
G105D (Duplicate)	Acetone Methylene chloride 1,1-Dichloroethene TCE 1,1,1-TCA	500 200 2,200 16,000 17,000		1000 500 500 500 500
G106D	(None)	BDL		-
GE Well	Acetone Methylene chloride 1,1,1-TCA Tetrachloroethene	100 5 40 2		10 5 5 5
City Well No. 1	1,2-Dichloroethene TCE 1,1,1-TCA Tetrachloroethene	620 3 2		5 50 5 5

= Compound was also found in the blank.
= Estimated value, below detection limits.
= Compound was identified in an analysis at a secondary dilution J D

factor.
= Below detection limit. BDL

TCE = Trichloroethene
1,1,1-TCA = 1,1,1-Trichloroethane

Note: Only compounds detected in the samples are listed.

Table 6-2, Continued

COMPOSITE GROUNDWATER SAMPLING RESULTS VOLATILE ORGANIC COMPOUNDS

CITY OF MORRISON, ILLINOIS JUNE 29-30, 1987

Sample		Concentrat	tion (ug/L) Detection	
Number	Compound	Measured	Limit	
City Well #3	1,2-Dichloroethene	6	5	
	TCE	53	5	
City Well #3	1,2-Dichloroethene TCE	6	5	
(Duplicate)		56	5	
City Well #4	(None)			
Bailer blank	Acetone	9 JB	10	
	Methylene chloride	5 B	5	
Trip Blank #1	Acetone	5 JB	10	
	Methylene chloride	5 B	5	
Trip Blank #2	(None)	BDL	-	

В

= Compound was also found in the blank.
= Estimated value, below detection limits.
= Compound was identified in an analysis at a secondary dilution factor.
= Below detection limit.
- Triphlomorphysis J D

BDL

TCE = Trichloroethene
1,1,1-TCA = 1,1,1-Trichloroethane
Note: Only compounds detected in the samples are listed.

Source: Mathes, 1987.

from 620 ug/L in City Well No. 1 to 53 ug/L in City Well No. 3. A concentration of 52 ug/L TCE was reported in the sample from Gl01D.

Figure 6-1 presents Cross Section A-A' showing the relationship between screened intervals in the wells in the southern portion of the site and the concentrations detected. The highest concentrations of volatile organic compounds were detected in the monitoring well located on the southwest end of the GE facility (G105D), which is screened at a depth of 32.2 to 48.1 feet. Concentrations of TCE and related compounds are also present in the City Well Nos. 1 and 3, and in the GE Carnation well. These wells are screened at much deeper depths the Mathes wells, indicating the volatile compounds may be migrating vertically downward into Volatile organic compounds were not detected in any bedrock. of the shallow monitoring wells, suggesting that the shallow unconsolidated deposits may not be significantly impacted.

6.2.2 Semi-volatile organic compounds

Table 6-3 is a list of the results of the semi-volatile organic analyses performed on the samples obtained from the Mathes monitoring wells. Two compounds were tentatively identified: bis (2-ethylhexyl) phthalate and 2-cyclohexen-l-one. Both of these compounds were detected at concentrations below the actual detection limits for the analytical method

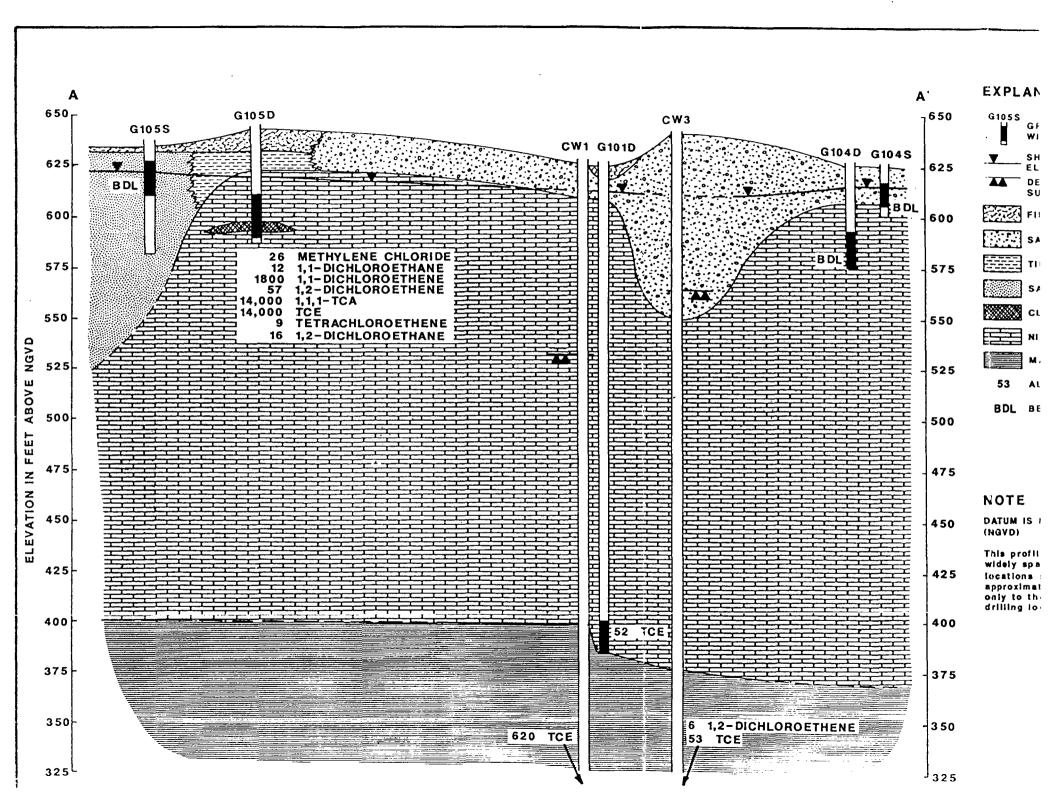


Table 6-3

COMPOSITE GROUNDWATER SAMPLING RESULTS SEMI-VOLATILE ORGANIC COMPOUNDS

CITY OF MORRISON, ILLINOIS JUNE 29-30, 1987

		Concentrat	ion (ug/L)
Sample Number	Compound	Measured	Detection Limit
G101D	Unknown Unknown Unknown Unknown	6.7 J 58 JB 14 JB 9.6 JB	
G102D	bis(2-Ethylhexyl) phthalate Unknown	2.0 J 27 JB	10
G104S*	bis(2-Ethylhexyl) phthalate Unknown Unknown Unknown Unknown Unknown Unknown	1.3 J 5.3 J 23 J 4.9 13 JB 10 J	10
G104D	2-Cyclohexen-1-one Unknown Unknown	5.4 JB 8.2 JB 14 JB	
G105S	bis(2-Ethylhexyl) phthalate Unknown Unknown Unknown Unknown Unknown	1.2 J 6.9 J 57 J 30 JB 5.7 J	10
G105D	<pre>bis(2-Ethylhexyl) phthalate Unknown Unknown</pre>	1.0 J 23 JB 8.5 J	10
G105D (Duplicate)	bis(2-Ethylhexyl) phthalate Unknown Unknown	1.3 J 39 JB 9.4 J	10
G106D	bis(2-Ethylhexyl) phthalate Unknown Unknown Unknown Unknown	2.4 J 5.9 J 4.8 JB 25 JB 5.7 JB	10

Source: Mathes, 1987.

B = Compound was also found in the blank.
J = Estimated value, below detection limits.
* = Results reported are those for re-extracted sample.
Note: Only compounds detected in the samples are listed.

and, therefore, are reported as tentatively identified compounds. These compounds are commonly identified as laboratory contaminants.

6.2.3 Inorganic compounds

The results of the inorganic analyses performed by Gulf Coast using USEPA Method 6010 on the groundwater samples collected from the Mathes wells are presented in Table 6-4. Only dissolved inorganic compounds are reported by Mathes and discussed. Also included in this table are the Primary Drinking Water Standards and State of Illinois Standards for the detected compounds.

No federal standards for inorganic compounds were exceeded in any of the sample analyses. State of Illinois standards for iron, manganese, silver, and copper were exceeded in samples from certain locations.

The State standards for iron (1.0 mg/L) and manganese (0.15 mg/L) were exceeded in samples from locations Gl04S (16.9 mg/L iron, 1.78 mg/L manganese), Gl05S (22.0 mg/L iron, 3.41 mg/L manganese), and Gl06D (21.1 mg/L iron, 0.911 mg/L manganese). The State standard for silver (0.005 mg/L) was exceeded in the sample from location Gl04D (0.029 mg/L). The State standard for copper (0.02 mg/L) was exceeded in the sample from location Gl05S (0.032 mg/L).

Table 6-4 COMPOSITE GROUNDWATER SAMPLING RESULTS INORGANIC COMPOUNDS

CITY OF MORRISON, ILLINOIS JUNE 29-JULY 3, 1987

Compound	Measured Concentration (mg/L)	Federal Drinking Water Standards* (mg/L)	Illinois Drinking Water Standards** (mg/L)
Antimony Arsenic Barium Iron Lead Manganese Nickel Selenium Zinc	0.050 R 0.004 R 0.033 0.158 0.012 0.021 0.020 0.006 R 0.013	0.05 1.0 0.05	1.0 0.15 1.0
Aluminum Barium Iron Lead Manganese Zinc	0.356 0.068 0.797 0.034 0.053 0.031	1.0 0.05	1.0 0.15 1.0
Aluminum Arsenic Barium Iron Lead Manganese Nickel Vanadium Zinc	13.2 0.007 R 0.279 16.9 0.024 1.78 0.121 0.011 0.094	0.05 1.0 0.05	1.0 0.15 1.0
Barium Iron Lead Manganese Silver Zinc	0.051 0.346 0.014 0.067 0.029 0.021	1.0 0.05 0.05	1.0 0.15 0.005 1.0
Aluminum Arsenic Barium Chromium Cobalt Copper Iron Lead Manganese Nickel	12.3 0.007 R 0.221 0.015 0.020 0.032 22.0 0.028 E 3.41 0.031	0.05 1.0 0.05	0.02 1.0 0.15 1.0
	Antimony Arsenic Barium Iron Lead Manganese Nickel Selenium Zinc Aluminum Barium Iron Lead Manganese Zinc Aluminum Arsenic Barium Iron Lead Manganese Nickel Vanadium Zinc Barium Iron Lead Manganese Nickel Vanadium Zinc Barium Iron Lead Manganese Silver Zinc Aluminum Arsenic Barium Iron Lead Manganese Silver Zinc Aluminum Arsenic Barium Chromium Cobalt Copper Iron Lead Manganese	Compound (mg/L) Antimony	Measured Concentration Standards* (mg/L)

Primary Drinking Water Standards.
 Standards shown are from Illinois Administrative Code, Title 35, Subtitle C, Chapter 1, Part 301 (General Water Use and Public Water Supply). Standards are shown only where a federal standard does not exist cr is higher.
 Spike recovery was not within control limits.
 Concentrations exceed calibration range of the instrument for this specific analysis.
 Only dissolved inorganic compounds detected in the samples are listed.

R

Note: Only dissolved inorganic compounds detected in the samples are listed.

Table 6-4, Continued

COMPOSITE GROUNDWATER SAMPLING RESULTS INORGANIC COMPOUNDS

CITY OF MORRISON, ILLINOIS JUNE 29-JULY 3, 1987

Sample Number	Compound	Measured Concentration (mg/L)	Federal Drinking Water Standards* (mg/L)	Illinois Drinking Water Standards** (mg/L)
G105D	Barium Chromium Iron Lead Manganese	0.060 0.012 0.122 0.008 0.032	1.0 0.05 0.05	1.0 0.15
G105D (Duplicate)	Aluminum Barium Chromium Iron Lead Manganese Zinc	0.091 0.060 0.026 0.226 0.004 0.057 0.012	1.0 0.05 0.05	1.0 0.15 1.0
G106D	Aluminum Arsenic Barium Cadmium Copper Iron Lead Manganese Nickel Vanadium Zinc	8.71 0.013 R 0.142 0.003 0.045 21.1 0.020 0.911 0.051 0.018 0.055	0.05 1.0 0.01	1.0 0.15 1.0

= Primary Drinking Water Standards.
= Standards shown are from Illinois Administrative Code, Title 35, Subtitle C, Chapter 1, Part 301 (General Water Use and Public Water Supply). Standards are shown only where a federal standard does not exist or is higher.

= Spike recovery was not within control limits.
= Concentrations exceed calibration range of the instrument for this specific analysis.

Note: Only dissolved inorganic compounds detected in the samples are listed.

7 SURFACE WATER QUALITY

Surface water and sediment samples were collected from Rock Creek and from the pond behind Volkmans/Ethan Allen during the sampling event on June 29-30, 1987. Three samples were collected from Rock Creek and one from the pond behind Volkmans/Ethan Allen. The samples were analyzed for HSL volatile organic compounds only and were analyzed using Method 624.

7.1 Surface water sampling results

Each compound identified in the samples was either identified at concentrations lower than the detection limit or was detected in the blank. 1,1,1-TCA (3 ug/L) was identified in the pond water sample collected from behind Volkmans/Ethan Allen. The results of the surface water samples are presented in Table 7-1.

7.2 Surface sediment sampling results

The results of the analyses performed on the sediment samples are presented in Table 7-2. Three volatile organic compounds were identified in the sediment samples: methylene

Table 7-1

SURFACE WATER SAMPLING RESULTS VOLATILE ORGANIC COMPOUNDS

CITY OF MORRISON, ILLINOIS JUNE 29-30, 1987

Sample Number	Compound	<u>Concentration (ug/</u> Detection Measured Limit	on
S101	Methylene chloride Acetone	4 J 5 57 B 10	
S201	Acetone 1,1,1-TCA	6 JB 10 3 J 5	
S301	Methylene chloride	3 J 5	
S302	Acetone	3 JB 10	
S302 (Duplicate)	None	BDL	

B = Compound was also found in the blank.

J = Estimated value, below detection limits.

BDL = Below detection limit.

1,1,1-TCA = 1,1,1-Trichloroethane

NOTE: Only compounds detected in the samples are listed.

Source: Mathes, 1987

Table 7-2

SURFACE SEDIMENT SAMPLING RESULTS VOLATILE ORGANIC COMPOUNDS

CITY OF MORRISON, ILLINOIS JUNE 29-30, 1987

			Conc	entration
Sample Number	Compound	Units	Measure	Detection 1 Limit
S101	Methylene chloride Acetone Total solids	ug/kg ug/kg percent	21 31 80.2	5 B 10
S201	Methylene chloride Acetone 2-Butanone Unknown Unknown Total solids	ug/kg ug/kg ug/kg ug/kg ug/kg percent	11	5 B 10 10 J
S301	Methylene chloride Acetone Total solids	ug/kg ug/kg percent	18 40 80.4	5 B 10
S302	Methylene chloride Acetone Total solids	ug/kg ug/kg percent	10 48 75.7	5 3 10
S302 (Duplicate)	Methylene chloride Acetone Total solids	ug/kg ug/kg percent	4 27 75.8	5 3 10

Compound was also found in the blank.
 Estimated value, below detection limits.
 Only compounds detected in the samples are listed.

Source: Mathes, 1987

chloride, acetone, and 2-butanone. Acetone was also detected in the blank and is considered a laboratory contaminant. The samples collected are identified as: S101, "up-gradient" of the site; S201, the pond sample; S301, "down-gradient" and adjacent to the city well field; and S302, "down-gradient" of the site.

Methylene chloride was the most consistently found compound in the sediment samples. Methylene chloride was detected in each of the samples at concentrations ranging from 4 ug/kg (at S302) to 35 ug/kg (at S201). The other compound identified, 2-butanone, was found at location S201 at a concentration of 11 ug/kg. Two unknown organic compounds were also detected at this location at estimated concentrations of 4 ug/kg and 18 ug/kg, respectively. Methylene chloride and 2-butanone are commonly identified as laboratory contaminants.

8 CONCLUSIONS

The following conclusions are based on the results of the Phase I investigation.

- 1. The hydrogeologic system present beneath the City of Morrison is not fully defined based on present data. In general, sands and gravels overlie the Silurian bedrock surface in the sourthwestern portion of the city, and finer-grained silts and clays overlie the Silurian bedrock in the northeastern part of the city. The Silurian bedrock surface appears to be highly irregular, but in general slopes towards the southwest.
- 2. An unconfined aquifer appears to be present across the site in the Niagaran-Alexandrian dolomite. A strong degree of hydraulic connection appears to be present between the sands and gravels and the Niagaran-Alexandrian dolomite in the southeastern portion of the city. A perched water table may be present in the lower permeability silts and clays in the northeastern portion of the city.
- 3. Evaluation of groundwater level data indicates that the general direction of groundwater flow is to the southeast. It is not known, on a more local scale, how Rock Creek influences groundwater movement. Accurate groundwater flow velocities could not be calculated due to a lack of data. Using estimated values of effective porosity and hydraulic conductivities, based on observations during drilling/well development operations, and the calculated groundwater gradient, flows velocities are believed to range from approximately 2 to 21 feet per year.
- 4. A spil gas investigation conducted by Tracer Research Corporation indicated a potential source area may be located in the vicinity of the northwest corner of the General Electric building. A possible plume of organic compounds trending southeast was identified from this location. The highest soil vapor concentrations detected were 5700 and 4800 ug/L of TCE at sampling locations having corresponding HNU readings of 500 and 100 needle deflection units, respectively.
- 5. A total of ten volatile organic compounds were detected in groundwater samples collected from the eight Mathes wells, from City Well Nos. 1, 3, and 4, and from the GE Carnation well. The greatest concentrations and number of compounds were detected in the sample from well GlO5D which is located on the southwest end of the General Electric building and screened in the shallow bedrock. The highest concentrations detected at this location (14,000 and 17,000

ug/L) were for the compounds trichloroethene (TCE) and 1,1,1-trichloroethane, respectively. Duplicate samples from this location indicate similar concentrations.

TCE was detected in City Well Nos. 1 and 3, in the GE Carnation well, and in Mathes wells GlolD and Glo5D (and duplicate). This compound was not detected in any of the shallow wells, in the wells in the northeastern part of the city (Glo6D and City Well No. 4), or in the wells located adjacent to the Fairgrounds Landfill (Glo4S and Glo4D).

Results from the discrete interval sampling event (G101D) indicate that the greatest zone of impacted groundwater in the vicinity of the city well field (City Well Nos. 1, 2, and 3) is along the top of the Maquoketa shale.

There were no semi-volatile organic compounds positively identified in the Mathes-installed wells.

None of the groundwater samples collected from the Mathes-installed wells contained inorganic compounds that exceeded Primary Drinking Water standards. Some compounds exceeded standards promulgated by the State of Illinois.

- Analytical results from the samples collected from Rock Creek did not indicate the presence of any volatile organic Methylene chloride was detected in all compounds. sediment samples collected from Rock Creek. The surface water and sediment samples collected from the pond behind Volkmans/Ethan Allen did indicate the presence of volatile organic compounds. A concentration of 3 ug/L 1,1,1-TCA was identified in the water sample. Methylene chloride (35 was identified in the sediment sample. ug/kg) Also detected in the sediment sample were two unknown compounds 18 ug/kg) and 2-butanone (11 ug/kg). compounds detected in the sediments may be laboratory artifacts.
- 7. Soil gas readings were also detected in the vicinity of the Fairgrounds Landfill. Although no volatile organic compounds were detected in the groundwater samples from the deep well installed at this location (Gl04D), organic compounds may potentially be present beneath this area, only at a depth lower than was monitored. Results from the discrete interval sampling (Gl01D) indicate that the greatest concentration of organic compounds in groundwater are on top of the Maquoketa shale. If the organic compounds have continued to migrate down-gradient from the city well field, they may also be present at this location above the Maquoketa shale.
- 8. Very little hydrogeological or chemical information has been accumulated around the city, with the exception of a

northwest-southeast trending transect between the Fairgrounds landfill and the Wetlands Area, and the northwest-southeast trending transect between City Well No. 4 and the quarry. Concentrations of volatile organic compounds (40 ug/L l,l,l-TCA) were detected in a groundwater sample from the GE Carnation well. However, there is no information to indicate if another potential source area is present.

9. Groundwater impacted by volatile organic compounds does not appear to be present in the northern portion of the city, in the vicinity of the Presto landfill and City Well No. 4.

9 RECOMMENDATIONS

The following recommendations are based on the data and conclusions presented in this report. Remedial action alternatives are recommended to address the presence of organic compounds in the groundwater in City Well Nos. 1. and 3. investigation activities are also presented to more fully interpret hydrogeologic conditions, and to evaluate potential source area(s) and migration pathways. Additional hydrogeologic information is considered necessary to examine fluid transport rates and mechanisms.

9.1 Site investigations

- A business inventory of manufacturing and/or industrial facilities that may have used TCE in the past in and around the City of Morrison should be conducted. The purpose is to identify other potential source areas of TCE.
- 2. A soil gas survey should be conducted to investigate any facilities identified during the business inventory that have a history of using TCE. If elevated soil gas values are obtained, soil samples should be collected at discrete intervals to a depth of 5-10 feet. The samples would be screened with air monitoring instruments and selected samples analyzed for volatile organic compounds.
- 3. A soil gas investigation should also be performed along the length of the north side of the General Electric facility, between General Electric and Volkmans/Ethan Allen. The survey should also extend along the length of the north side of the Volkmans/Ethan Allen facility, along the railroad easement, to evaluate potential spill areas. Figure 9-1 presents the approximate location proposed to be covered by the soil gas survey. Railroad sidings in the city should also be investigated as these areas are typically used for transfer of industrial liquids. By

investigating these areas, additional source(s) may be identified. As previously mentioned, if elevated soil gas values are recorded, soil samples should be taken at discrete intervals and analyzed for volatile organic compounds.

- 4. A seismic survey should be performed in the southern and western portion of the city. The purpose is to map bedrock topography and the top of the Maquoketa shale to provide three-dimensional correlation with geologic profiles. The seismic survey would identify low areas on the bedrock surface, which are potential migration pathways for the organic compounds. Figure 9-1 shows the recommended area of coverage by the seismic survey.
- Two wells should be installed in the vicinity of City Well 5. The purpose of these wells is to evaluate the potential for TCE up-gradient of the city well field, and to test the confining nature of the Maquoketa shale. One well would be screened in the Maquoketa shale, with a seal above and below the screen, to monitor for the presence of organics in this unit. Information would also be gained about the hydraulic nature of the shale. Samples would be collected during drilling and scanned for the presence of fractures and zones of higher permeability. The second well would be placed in an up-gradient position from City Well No. 1 and screened just below the Maquoketa shale, in the deep aquifer. The purpose of this well is to determine the volatile organics detected in the samples monitoring well G105D are migrating through the Maguoketa shale and entering the deep aquifer from an up-gradient position. Soil/core and groundwater samples should be collected from these locations gather to The proposed locations of these wells are information. shown in Figure 9-1.
- Additional test boreholes around the city should be drilled monitoring wells installed to obtain subsurface The approximate locations of these wells are information. presented on Figure 9-1. The results of the soil gas and seismic surveys could influence the specific locations of these wells. The wells would be used for geologic logging, soil and groundwater sampling, and aquifer testing. of the wells could also be constructed as recovery wells to control the movement of impacted groundwater in vicinity of G105D.

One well should be located in the vicinity of the Fairgrounds landfill and extend to the top of the Maquoketa shale. The purpose is to monitor groundwater on top of the Maquoketa shale. Another well should be located between the city well field and the General Electric facility and extended to the top of the Maquoketa shale. Discrete-

interval samples should be collected from this well to evaluate the movement of the potential organic plume from the area around G105D to the city well field.

Other wells should be located in areas where low points occur on the bedrock surface as identified during the seismic survey. These lowpoints would be good locations addition, recovery wells. In a well should be installed adjacent to well G105D and continuously sampled to the top of the Maquoketa shale. This borehole would evaluate the vertical extent of organic compounds in this A well located on the south side of Rock Creek, in an east-west line with the city wells, should be installed to monitor groundwater movement and possibly the movement of organic compounds in this direction. The other wells placed around the city would also be used as piezometers to indicate groundwater flow directions in the shallow aquifer and the extent of migration of the organic compounds.

- 7. The size potential and extent of the source area located adjacent to the General Electric facility should be evaluated. This can be accomplished by drilling shallow test boreholes in a radial pattern around G105D and analyzing selected samples for volatile organic compounds. The samples to be analyzed would be chosen based on air quality instrument readings.
- 8. The locations of the storm and sanitary sewer network around the city should be investigated. It is possible that these are acting as migration pathways or conduits for organic compounds. (The City of Morrison water treatment plant is located down-gradient of the city well field and the potential source area at G105D).

9.2 Remedial action alternatives

The following remedial actions are proposed assuming that the investigations from Section 9.1 are conducted.

The first remedial action is proposed assuming that volatile organic compounds are present only in the shallow bedrock and surficial aquifer and not in the deep aquifer beneath the Maquoketa shale. This can be tested by

installing a well screened beneath the Maquoketa shale, up-gradient from the city well field as proposed above in Recommendation No. 5.

The second remedial action proposed is based on information obtained from the seismic survey proposed in Recommendation No.

4. The seismic survey would identify low areas on the bedrock surface that may be potential collection areas for TCE and associated compounds.

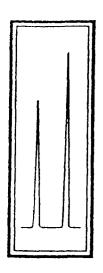
The following is a list of remedial actions recommended to address the organic compounds detected in City Well Nos. 1 and 3 in the City of Morrison.

1. Recomplete City Well Nos. 1 and 3 into the Maquoketa shale with a smaller diameter casing to seal off the Niagaran-Alexandrian dolomite from the underlying hydrologic units. This can be accomplished by setting a drillable plug in the casing at a depth just below the bottom of the Maquoketa shale. A packer is then placed at the base of the hole; the casing is set and the hole is then pressure grouted to the surface.

The purpose of this remedial action is to seal the city water supply wells from the upper aquifer, which is considered to be hosting the organic compounds. The organics are believed to be traveling down the existing well casings and impacting the deeper aquifer. By properly casing off the upper material, the organic compounds will be sealed in the upper aquifer and prevented from impacting the city water supply.

2. Recovery wells should be installed in the vicinity of G105D to intercept the migration of volatile organic compounds. The area around G105D has been identified as a potential source for the organic compounds found in City Well Nos. 1 and 3. Because the extent of the source area has not been determined, recovery wells can be used to control the migration of organic compounds away from this area until further investigations can be implemented to evaluate the nature and extent of the source area.

REFERENCES


- Anderson, R. H., 1951, Letter from Anderson to Mayor and City Council of Morrison, Illinois; Subject: Pump tests in City Well No. 1, July 31, 1951.
- Foster, John W., August 10, 1949, "Geological report on the groundwater possibilities at Morrison, Whiteside County, Illinois"; Illinois State Geological Survey.
- Foster, John W., 1956, "Groundwater geology of Lee and Whiteside Counties, Illinois"; Illinois State Geological Survey, Report of Investigation 194.
- Foster, John W. and Merlyn B. Buhle, August 10, 1953, "Geologic and earth resistivity report on shallow groundwater possibilities at Morrison, Whiteside County"; Illinois State Geological Survey.
- Freeze, Allen R. and John A. Cherry, 1979, Groundwater, Prentice Hall, Englewood Cliffs, New Jersey.
- General Electric, January 20, 1987, Letter from Skaff (GE) to Newman (IEPA); Subject: Summary report (12/12/86) of analytical services performed by O. H. Materials at General Electric site in Morrison, Illinois.
- Hansen, Paul, undated, "Summary report descriptive of the water supply of Morrison".
- Hanson, Ross, August 18, 1953, "Shallow groundwater possibilities at Morrison, Whiteside County".
- IEPA, 1986, Analytical results of samples obtained from City Well Nos. 1, 3, and 4, sampling date December 3, 1986.
- IEPA, 1986, Analytical results of samples obtained from City Well Nos. 1, 3, and 4 and the distribution system, sampling date December 12, 1986.
- IEPA, 1986, Analytical results of samples obtained from pond behind Volkmans, of GE Carnation well, sewage treatment plant and distribution system, sampling date December 19, 1986.
- IEPA, 1986, Division file memoranda; Subject: Results of physical measurement unit sampling under excavated TCE tank at General Electric, Morrison, Illinois, December 23, 1986.

REFERENCES, Continued

- IEPA, 1987, Analytical results of sample obtained from City Well No. 2, sampling date February 3, 1987.
- Illinois State Geological Survey, February 19, 1947,
 "Geological report on the Libby, McNeill, and Libby New
 Well at Morrison, Illinois"; Letter from Bays to Britton.
- Illinois State Geological Survey, October 13, 1954, Letter from Foster to Anderson; Subject: 1954 Test Borehole data.
- Illinois State Water Survey, October 24, 1947, Bulletin No. 40, Morrison, Whiteside County.
- Illinois State water survey, 1987, Water well log inventory of T21N, R4E, sections 11, 12, 13, 14, 23, 24, 25, and 26; T21N, R5E, sections 7, 8, 17, 18, 19, 20, 29, and 30.
- Keller, Kerry, May 12, 1987, Illinois Environmental Protection Agency, oral communication.
- Newman, Dennis, February 11, 1987, Illinois Environmental Protection Agency, oral communication.
- O. H. Materials, 1987, Report of analytical results of City Well Nos. 3 and 4 to General Electric, Morrison, Illinois, sampling date April 3, 1987.
- Tapson, Sam, City Administrator of Morrison, February 11, 1987, oral communication.
- USEPA, 1987, Letter from Vaneta Simon (USEPA) to Sam Tapson (City of Morrison) reporting April 14, 1987, analysis of samples collected from City Well Nos. 1, 3, and 4, May 12, 1987.
- USGS, 1985, Morrison quadrangle, 7 1/2 minute topographic map.

APPENDIX A

TRACER RESEARCH CORPORATION SOIL GAS REPORT

Tracer Research Corporation

3855 North Business Center Drive Tucson, Arizona 85705 (602) 888-9400

SOIL GAS INVESTIGATION
FOR
CITY OF MORRISON
MORRISON, ILLINOIS

MAY 1987

Prepared For:

John Mathes & Associates, Inc. 210 West Sand Bank Road P.O. Box 330 Columbia, Illinois 62236-0330 Submitted By:

Tracer Research Corporation

TABLE OF CONTENTS

INTRODUCTION
BACKGROUND ON THE METHODOLOGY
SAMPLING AND ANALYTIC PROCEDURES 3
QUALITY ASSURANCE/QUALITY CONTROL PROCEDURES
RESULTS
CONCLUSIONS
APPENDIX A
CONDENSED DATA

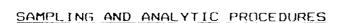
Tracer Research Corporation (TRC) performed a soil gas investigation from May 2 to May 8, 1987 in the city of Morrison located in Whiteside County, Illinois. The investigation was performed under contract to John Mathes & Associates.

A total of 60 soil gas samples were collected and analyzed to determine the source and extent of subsurface contamination. Soil gas samples were collected at depths ranging from 2 to 5 feet and were analyzed for the following halocarbon compounds:


1,1,1-Trichlorotrifluoroethane (F-113)
1,1,1-Trichloroethane (TCA)
Trichloroethene (TCE)
Tetrachloroethene (PCE)

Soil gas normally contains background levels of halocarbon contamination which are mainly a function of ambient air concentrations of volatile organic compounds (VOC's). When interpreting the results from a soil gas investigation, background contamination needs to be distinguished from levels of contamination that may be significant in terms of soil or groundwater contamination. The level of significance is both compound and site specific, and is established by considering the concentration of the contaminant in the ambient air, the concentration in the soil gas in areas believed or known to be clean, and TRC's previous experience under similar conditions.

At this investigation site, the following concentrations of halocarbons were interpreted as being significant:


TCE - 0.01 ug/L TCA - 0.01 ug/L PCE - 0.01 ug/L F-113 - 0.1 ug/L

These levels of significance indicate areas which may be underlain by groundwater or soil contamination.

BACKGROUND ON THE METHODOLOGY

The presence of volatile organic chemicals (VOCs) in shallow soil gas indicates the observed compounds may either be in the vadose zone near the probe or in groundwater below the probe. The soil gas technology is most effective in mapping low molecular weight halogenated solvent chemicals and petroleum hydrocarbons possessing high vapor pressures and low aqueous solubilities. These compounds readily partition out of the groundwater and into the soil gas as a result of their high gas/liquid partitioning coefficients. Once in the soil gas, VOCs diffuse vertically and horizontally through the soil to the ground surface where they dissipate into the atmosphere. The contamination acts as a source and the above ground atmosphere acts as a sink, and typically a concentration gradient develops between the two. concentration gradient in soil gas between the source and ground surface may be locally distorted by hydrologic and geologic anomalies (e.g. clays, perched water); however, soil gas mapping generally remains effective because distribution of the contamination is usually broader in areal extent than the local geologic barriers and is defined using a large data base. The presence of geologic obstructions on a small scale tends to create aromalies in the soil gas-groundwater correlation, but generally does not obscure the broader areal picture of the contaminant distribution.

Tracer Research Corporation utilized an analytical field van which was equipped with two gas chromatographs and two Spectra Physics SP4270 computing integrators. In addition, the van has two built-in gasoline powered generators which provide the electrical power (110 volts AC) to operate all of the gas chromatographic instruments and field equipment. A specialized hydraulic mechanism consisting of two cylinders and a set of jaws was used to drive and withdraw the sampling probes. Probes consist of 7-foot lengths of 3/4 inch diameter steel pipe which are fitted with detachable drive points. A hydraulic hammer was used to assist in driving probes past cobbles and through unusually hard soil.

Soil gas samples were collected by driving a hollow steel probe to a depth between 2 feet and 5 feet into the ground. The above-ground end of the sampling probes was fitted with a steel reducer and a length of polyethylene tubing leading to a vacuum pump. Five to 10 liters of soil gas was evacuated from the formation with a vacuum pump. During the soil gas evacuation, samples were collected by inserting a syringe needle through a silicone rubber segment in the evacuation line and down into the steel probe. Ten milliliters of gas were collected for immediate analysis in the TRC analytical field van. Soil gas was subsampled (duplicate injections) in volumes ranging from 1 ul to 2 ml, depending on the VOC concentration at any particular location.

A gas chromatograph equipped with an electron capture detector was used for analyses of F-113, TCA, TCE and PCE. Nitrogen was used as the carrier gas.

LIMITS OF DETECTION

Detection limits are a function of the injection volume as well as the detector sensitivity for individual compounds. the detection limit varies with the sample size. Generally, the larger the injection size the greater the sensitivity. However, peaks for compounds of interest must be kept within the linear range of the detector. If any compound has a high concentration, it is necessary to use small injections, and in some cases to dilute the sample to keep it within linear range. This may cause decreased detection limits for other compounds in the analyses. The detection limits range down to 0.00005 ug/l for compounds such as TCA and PCE depending on the conditions of the measurement, in particular, the sample size. If any component being analyzed is not detected, the detection limit for that compound in that analysis is given as a "less than" value (e.g. <0.0001 ug/l). This number is calculated from the current the sample size, and the estimated minimum peak response factor, size (area) that would have been visible under the conditions of the measurement.

QUALITY ASSURANCE/QUALITY CONTROL PROCEDURES

Tracer Research Corporation's normal quality assurance procedures were followed in order to prevent any cross-contamination of soil gas samples.

- . Steel probes are used only once during the day and then washed with high pressure soap and hot water spray or steam-cleaned to eliminate the possibility of cross-contamination. Enough probes are carried on each van to avoid the need to reuse any during the day.
- . Probe adaptors (steel reducer and tubing) are used once during the course of the day and cleaned at the end of each working day by baking in the GC oven. The tubing is replaced periodically as needed during the job to insure cleanliness and good fit.
- . Silicone tubing (connecting the adaptor to the vacuum pump) is replaced as needed to insure proper sealing around the syringe needle. This tubing does not directly contact soil gas samples.
- . Glass syringes are usually used for only one sample per day and are washed and baked out at night. If they must be used twice, they are purged with carrier gas 'nitrogen' and baked out between probe samplings.
- Septa through which soil gas samples are injected into the chromatograph are replaced on a daily basis to prevent possible gas leaks from the chromatographic column.
- . Analytical instruments are calibrated each day by the use of chemical standards prepared in water by serial dilution from commercially available pure chemicals. Calibration checks are also run after approximately every five soil gas sampling locations.
- 2 cc subsampling syringes are checked for contamination prior to sampling each day by injecting nitrogen carrier gas into the gas chromatograph.
- Prior to sampling each day, system blanks are run to check the sampling apparatus (probe, adaptor, 10 cc syringe) for contamination by drawing ambient air from above ground through the system and comparing the analysis to a concurrently sampled air analysis.

- All sampling and 2 cc subsampling syringes are decontaminated each day and no such equipment is reused before being decontaminated. Microliter size subsampling syringes are reused only after a nitrogen carrier gas blank is run to insure it is not contaminated by the previous sample.
- . Soil gas pumping is monitored by a vacuum gauge to insure that an adequate gas flow from the vadose zone is maintained. A negative pressure (vacuum) of 2 in. Hg less than the maximum capacity of the pump (evacuation rate >0.02 cfm) usually indicates that a reliable gas sample cannot be obtained because the soil has a very low air permeability.

RESULTS

A total of 60 soil gas samples were collected in the city of Morrison, Illinois. Analytical data from the investigation is summarized in Appendix A. Figure 1 is a map showing the soil gas sampling locations. Figures 2 through 5 are isoconcentration contour maps for TCE, TCA, PCE and F-113, respectively. Concentrations were contoured on an order of magnitude interval.

The primary objective of the investigation was to locate the source of contamination leading to elevated levels of VOC's detected in city wells #1, #2, and #3. This was accomplished by sampling in the vicinity of three potential sources: Wetlands Area, Presto Landfill and the Fairgrounds Landfill. In addition soil gas samples were collected in the vicinity of city wells #1, #2, #3 and #4. Soil gas samples were also collected south of the Wetlands Area.

The highest concentrations of VOC's in the soil gas samples were detected in the southern portion of the Wetlands Area. Of the quantified VOC's, TCE was detected in the highest concentrations, with the highest amount detected at sampling location SG-32 (5200 ug/L). Contamination decreased to the south from SG-32 but again increases at soil gas locations SG-42, SG-43 and SG-44. This suggests that a second source of contaminants may be present in the vicinity of these sampling locations.

Based on the plume geometry generated from the soil gas data, the contamination appears to be migrating towards the south/southeast. In the soil gas, TCE extends at least to SG-44 where 12 ug/L of TCE were detected. This, however, does not necessar: Iv indicate the extent of underlying TCE groundwater contamination. It is possible that contamination in the groundwater extends as far south as the city wells at levels not reasonable to be detected in the soil gas. Also, a clay layer,

Tracer Research Corporation

encountered approximately 4 feet beneath the ground surface, may restrict the vertical movement of VOC vapors from the contaminated groundwater to the surface. This would cause a decrease in the ratio of concentrations of VOC's in the soil gas to groundwater.

Significant levels of VOC's were detected in the vicinity of city wells #1, #2 and #3. These levels of contamination are likely related to contamination from the Wetlands Area although soil gas analysis could not confirm this, Soil gas samples collected in the vicinity of the Presto Landfill and city well #4 did not contain significant amounts of quantified VOC's.

CONCLUSIONS

The results from this investigation indicate sources of VOC contamination in the south portion of the Wetlands. Area with the highest levels of contaminants detected at sampling locations SG-32 and SG-34. Contamination decreases south of these locations but then increases in the vicinity of SG-44. Contamination emanating from these areas extends south-southeast towards city wells #1, #2 and #3. The soil gas contaminant plume could not be traced from the wetlands area to the wells possibly because of the vapor restricting clay layer. A groundwater contamination plume may extend beyond that defined by soil gas at concentrations lower than can be detected above background in the soil gas. Significant VOC contamination in the soil gas was not detected in the vicinity of city well #4 and the Presto Landfill.

Tracer Research Corporation

APPENDIX A: CONDENSED DATA

JOHN MATHES & ASSOCIATES-MORRISON, ILLINOIS

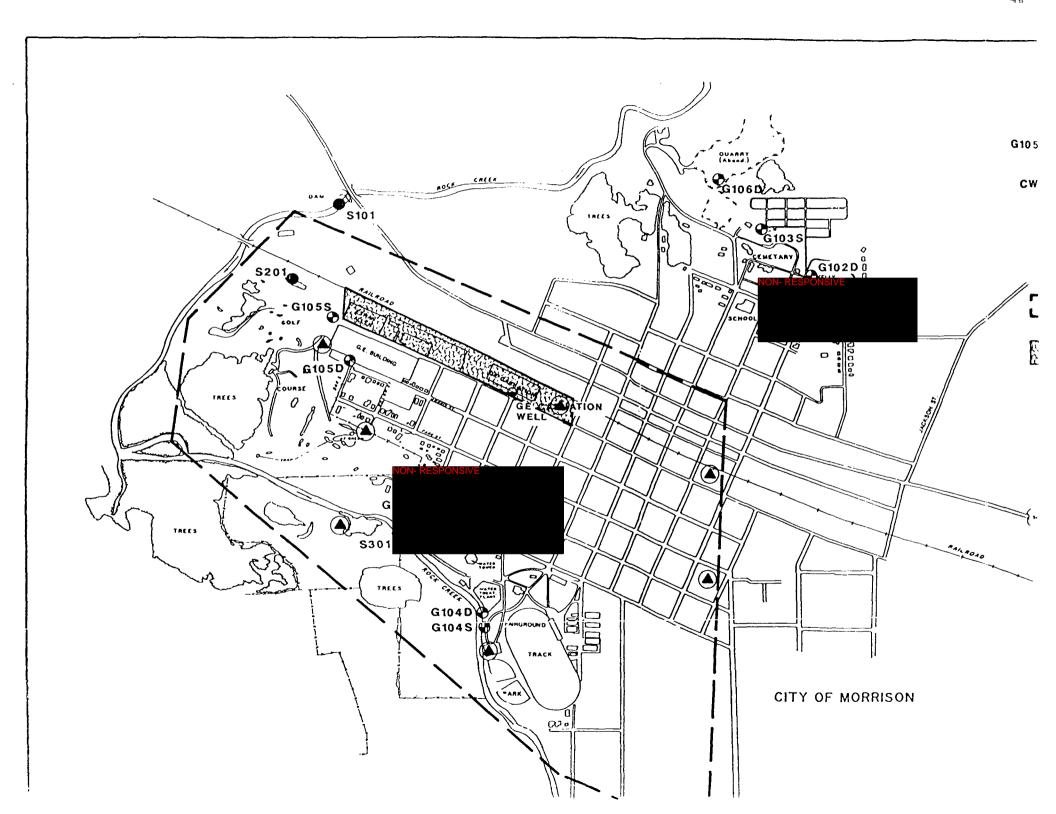
Sample				F-113	TOA	TCE	rce
Send St	Sample	Dept.	ch Oate	(ug/1)	CogZ1 ((ug/l)	CugZ10
\$603 \$7 \$65,05 \$0,0002 \$0,000 \$0,001 \$0,005 \$6065 \$7 \$05,005 \$0,0002 \$0,003 \$0,005 \$0,0006 \$5606 \$7 \$05,005 \$0,0002 \$0,003 \$0,005 \$0,0006 \$5606 \$7 \$05,005 \$0,002 \$0,003 \$0,003 \$0,0006 \$5607 \$7 \$05,005 \$0,002 \$0,004 \$0,005 \$0,001 \$0609 \$5 \$05,005 \$0,005 \$0,004 \$0,005 \$0,001 \$0609 \$5 \$05,005 \$0,0002 \$0,006 \$0,003 \$0,00	5601		05//05	40.0002	0.000	0.03	0.007
S604 S7 05205 S,0.0002 0.003 0.005 40.00006 5606 S7 05205 0.002 0.003 0.005 40.00006 5606 S7 05205 0.002 0.003 0.003 0.003 0.003 5608 S7 05205 0.006 0.004 0.005 0.0001 0.6003 56008 S7 05205 0.006 0.004 0.005 0.0001 0.6003 0.0003 0.6003 0.0003 0.0003 0.0003 0.6003 0.0003	5.6000	51	0.95 - 0.5	0.0002	0.0006	0.006	0.009
\$608 \$7 05/05 \$0,0002 \$0,003 \$0,005 \$0,0006 \$6007 \$7 05/05 \$0,02 \$0,004 \$0,003 \$0,003 \$6007 \$7 05/05 \$0,006 \$0,004 \$0,005 \$0,0003 \$6008 \$7 05/05 \$0,0002 \$0,006 \$0,003 \$0,0003 \$610 \$7 05/06 \$0,0002 \$0,006 \$0,003 \$0,0003 \$611 \$7 05/06 \$0,0002 \$0,001 \$0,002 \$0,003 \$611 \$7 05/06 \$0,0002 \$0,001 \$0,002 \$0,003 \$611 \$7 05/06 \$0,0002 \$0,001 \$0,002 \$0,002 \$611 \$7 05/06 \$0,0002 \$0,003 \$0,002 \$0,002 \$613 \$7 05/06 \$0,0002 \$0,003 \$0,002 \$0,002 \$616 \$7 05/06 \$0,000 \$0,003 \$0,003 \$0,003 \$617 \$7	5.6000			0.0002	0.002	0.01	10.005
Section Sect	\$604	5.	05/05	0.04	0.2	0.002	0.01
S607	5605	5.5	05/705	<.0.0002	0.000	0.005	< 0.00006
Sens St 05705 0.06 0.04 0.005 0.001 C609 St 05705 0.0002 0.006 0.003 0.0003 Seno St 05705 0.04 0.08 0.003 0.002 C611 St 05706 0.05 0.04 0.02 0.03 C612 St 05706 0.002 0.01 0.002 0.003 C613 St 05706 0.003 0.02 0.01 0.003 C614 St 05706 0.03 0.003 0.002 0.003 C615 St 05706 0.03 0.003 0.002 0.003 C616 St 05706 0.03 0.003 0.002 0.003 C617 St 05706 0.0002 0.003 0.003 0.002 C610 St 05706 0.0002 0.02 0.02 0.002 C610 St 05706 0.04 0.005 0.003 0.003 C610 St 05706 0.04 0.005 0.003 0.003 C610 St 05706 0.04 0.005 0.003 0.003 C620 St 05706 0.04 0.005 0.003 0.003 C621 St 05706 0.04 0.002 0.002 0.0003 C622 St 05706 0.04 0.002 0.002 0.0003 C623 St 05706 0.03 0.01 0.11 0.002 C624 St 05706 0.03 0.01 0.002 0.0003 C625 St 05706 0.003 0.11 0.004 0.0000 C626 St 05706 0.003 0.11 0.004 0.0000 C627 St 05706 0.003 0.11 0.004 0.0000 C628 St 05706 0.003 0.1 0.005 0.000 C639 St 05706 0.005 0.1 0.005 0.003 C630 St 05706 0.005 0.1 0.005 0.000 C633 St 05706 0.005 0.4 0.001 0.000 C634 St 05706 0.005 0.4 0.001 0.000 C635 St 05706 0.005 0.4 0.001 0.000 C636 St 05706 0.005 0.4 0.001 0.000 C637 St 05706 0.005 0.4 0.001 0.000 C638 St 05707 0.005 0.4 0.005 0.000 C639 St 05706 0.005 0.4 0.005 0.000 C639 St 05706 0.005 0.4 0.005 0.000 C639 St 05706 0.005 0.4 0.005 0.000 C630 St 05706 0.005 0.4 0.005 0.000 C633 St 05707 0.005 0.005 0.005 0.000 C634 St 05707 0.005 0.005 0.005 0.005 0.0000 C635 St 05707 0.005 0.005 0.005 0.005 0.0000 C636 St 05707	9606	51	05705	0.02	0.004	0.04	0.006
Section Sect	5607	٠,٠		0.02	0.02	0.003	0.008
S610	560B	-	05/05	0.06	0.04	0.005	0.001
10613 37 05766 0.005 0.04 0.02 0.03 0.617 57 05706 0.0002 0.01 0.002 0.002 0.002 0.003 0.002 0.003	0.6090	5,	$(Y_0, (y_0))$	40.0002	O. Otos	0.003	0.0003
100 100	9610	5.	05705	0.04	0.08*	0.08	0.02
Section Section Color	5.654.4	3.	ideal are	0.05	0.04	0.02	0.03
Self	1.15 (1.7)	9.	05706	0.0002	0.01	0.00%	0.002
Self	Se ko		157 de	0.03	0.02	0.01	0.008
10,45	500 (-1		J157 06	0.03	0.003		0.008
Colif	$^{2}(\partial \rho A^{2} b)$	**	ottarije.	11.0002	0.000	Մ. Ծ ԱՅ	0.002
100	53040	.,.	Offic files	0.4	0.2	ı	0.009
100	5617	;,		0.00002	0.02	0.02	0.002
10	(364).)		$05/40_{\rm P}$	0.04	0.04	1	0.02
36	1.05.4.11	1.	eres espeja	Q. 94	0.000	0.008	0.008
16 17 16 10 10 10 10 10 10 10	116,40	. •	150 (140)	11 11 1	OLONO?	44.400022	0.0002
\$6.23 \$1 05706 0.03 0.01 0.1 0.002 0.003 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0004 0.0003 0.0004 0.0005 0.000 0.00005	33.74	41*	$\{0^{G_{1}}\in\{0\}\}$	0.04	(0.008)	0.008	0.0008
1624	062	e. •	O's Alley	9.43	0.0002	0.003	0.002
1624	36.13	•,•	05/06	មា.មាន	0.01	11.1	0.002
\$6.00	18624	ч ١	0.0706	ប. មាម2		0.008	u, ano e
\$637 \$1 \$2.06 \$0.068 \$0.1 \$0.6 \$0.01 \$0.60 \$0.01 \$0.60 \$0.00	5625	٠,٠	ივა მტ	0.02	0.01	0.004	u. 00 00 6
\$6.67 \$1 05.706 0.008 0.1 0.6 0.01 56.60 \$1 05.706 0.02 4 1 0.008 56.29 \$1 05.706 0.01 12 2 0.009 56.00 \$7 05.706 0.02 2 1 0.02 56.31 \$1 05.706 0.005 0.4 0.01 0.0002 56.32 \$1 05.706 1 26 \$5.000 20 56.33 \$1 05.707 2 610 4.800 02 56.34 \$1 05.707 0.1 0.05 0.05 0.005	56.36	e, ·	60% / 005	e. t	0.00_{\odot}	0.009	0.004
10009		4.	$e^{i\phi} < 0.05$	0.003	0.1	fig.6.	0.01
\$6009	56.33	: •	11/57/11/5	0.02	-1	ì	Մ. Ծ ԱՌ
1631 57 079 06 01.60\$ 01.4 01.01 01.0002 1632 47 079 06 1 26 51.000 20 1633 57 077 07 0.03 2 01.07 01.004 15634 57 057 07 2 610 4,800 02 15635 31 057 07 0.1 0.05 0.05 01.00005	96.39	15.1	1050 (05	30.011	1.2	2	0.003
5632 41 0506 1 36 5000 30 5633 51 0507 20 30 30 30 30 30 30 30 30 30 30 30 30 30	136-90	r; s	$(h_{i}, v)(h^{\alpha})$	$(1,0]_{\mathbb{Z}_2}$.2	1	0.2
0630 41 05006 5,000 30 5633 51 05267 0,03 0 0,00 0,00 5634 51 05267 0 610 4,800 00 5635 31 05207 0.1 0.05 0.05 0.00005	9601	:,*	ووان رائي	0.005	111	01.91	() សេចជូរដ្ឋា
\$634 51 05/07 2 610 4,800 32 \$635 31 05/07 0.1 0.05 0.05 0.00005		4.1					
5695 3' 05/07 0.1 0.05 0.05 0.0000 5							
5695 3' 05/07 0.1 0.05 0.05 0.0000 5	5634	c, ·	052.07	2	610	4.800	.62

More a	tions		
1	Traken kerence en regkri	adjacent.	program is
(if)	rest secretions of		

JOHN MATHES & ASSOCIATES-MORRISON, ILLINOIS

Sample	(Jept	th Date	F=118 (ug/1)	TCA Cug/li	FCE Cug/1)	PCE Lugz I L
9.6.37	⊈ ; •	09/07	0.4	9	0.6	0.04
5.65.03	41.	05/67	-0.0002	0.004	0.000	0.0003
0.13039	-1*	05/07	<0.0002	0.002	0.002	0.002
96-10	eş •	05/07	<0.0002	0.0000	0.0009	0.0002
(305) (4	15.1	05/07	0.6	Ü. 4	0.009	0.004
5.6-4.2	•5.*	05/07	- स	150	71	0.3
945-49	e:, *	05/07	0.3	4	1-4	0.00
9454F1	13.	05/07	០.០៩	Э	1.2	0.06
56-45	5'	05/07	0.08	0.1	0.002	0.0006
Salve et S	-5°	05/07	0.2	0.2	0.0006	0.0008
April 7	1,	05/07	0.4	0.4	0.06	0.4
133 153	• • •	05/02	0.06	0.03	0,0009	0.0004
_{at se} tra	5.5	05/07	0.1	0.02	0.003	0.00003
ۇ ئەي ^ە رىقىن	1,	05/07	40.9	0.0	640	<0.3
23364	15.7	05/07	0.09	1.1	12	0.9
455	•	05/08	0.02	0.006	0.002	0.00000
00.03	j.	05/08	0.1	0.04	0.0004	0.0003
tula Del		0570B	0.02	D.OOA	0.0006	0,0001
1314175	٠,٠	05708	0.02	0.005	(0, 000)	<u>0. 00000</u>
11.50		05760	0.01	0.001	OLOGO.	0.05005
1. C	<u>.</u> .,	05/68	0.01	0.003	0.0005	Or Cost Of
Jan 1863		05/08	0.02	0.004	0.0000	0.0000
.659	., •	05709	0.02	0.000	0.00_{\odot}	0.0001
SEST	31	05//03	0.0002	0.0004	0.0⊎04	10.00005

Tracer Research Corporation


Notationsa

1 interference with adjacent peaks: NB not vistigged

Final great bu K. Tolman

Checked by J. Phillips

APPENDIX B
GEOLOGIC LOGS

GEOLOGIC LOG

SERIAL NO.	GL
PAGE $\frac{1}{2}$ OF $\frac{2}{2}$	

		E	ORII	NG NO). <u> </u>	31 TA 1	.05S RTED 6	 -22 - 87/082	PROJECT NO. 1	287283	2		
	PROJECT NAME Morrison Phase 1 RI MAJOR TASK 2292 SUBTASK -					-							
								DRILLING	G METHOD (S) Air Rotary				
Elders, T	H	LE NO.	SAMPLE INTERVAL	LE	RECOVERY	NO.ES	AMPLE TAINED		CLASSIFICATION SYSTEM:	H OF	tsf)		RK #
)	N	SAMP	SAMP	SAMPLE	RECO	JAR		SAMPLE LABEL SERIAL	SAMPLE DESCRIPTION	DEPTH CHANGE	QP (N/6"	REMARK
HELPER	-		. <u>-</u>						O' Gravel; Dark Brown Silty	6"			
HEI	_						Į.		SAND, Trace Gravel FILL]	ļ		
11	_		. ,				ļ						
- 1	_			_					CONCRETE @ 3'	3'			
Elders,	_5								Dark Brown Silty Fine SAND,				
E]						SM (Moist)]			
DRILLER	_				. }								
III	_				_								
DA	_												
1	-10						1						
	-10						{						
	_	Ī	I				{		SAA, Wet				$\begin{vmatrix} 1 \\ 2 \end{vmatrix}$
		Ī	I							7			
	-	1	1	1									
1.4		1		1						1			
<u> </u>	-15		Ī	Ī			}			1			
	-		Ţ	İ						1			
三二	-		1	†			1			1			
NO D		1	Ţ	1						1			
E/1		1	ţ	†						1 1			
MAKE/MODEL	-20	+	†	†					Dark Brown Gilter Bing CAND	1			3
U		+	†	ţ					Dark Brown Silty Fine SAND	1 1			
RIG	.	+	+	†			}	}	Trace Clay, SM; Wet	1 1			
-		+	+	+	}					-			4
F		-	-	+	{			ł		1 1	ĺ		
-	-25	+	+	+		1		}		-			
		\bot				_L							

VELL INSTALLED: YES X NO	DATE/TIME OF COMPLETIONS
COMMENTS	BORING 6-22-87/1000
	WELL INSTALLATION 6-22-87/1200
GEOLOGIST SIGNATURE	WELL PROTECTION $6-22-87/1200$

GEOLOGIC DRILLING COMMENTS

BORING NO. G105S	JMA PROJECT NO. 12872832	DATE _6-22-87
------------------	--------------------------	---------------

REMARK NO.	REMARKS
1	Encountered h ₂ 0 @ 11.0'
2	Driller indicating blowin on top of bit
3	Pulled rods cut @ 20', hole collapsed to 8.0' started new hole 3.0' N
4	In new hole G105S installed 22' of 8" casing to hold hole open. Continued to advance hole
5	@ 53.0' still in silty sand (no rock) decision to install well: backfill to 23.0'. Pulled rods; hole collapsed to 23.0'

	WATER LEVELS				
REFERENCE POINT	DATE	TIME	DEPTH (FT.)	COMMENTS	TECH.
Ground Surface	6-22-87	0840	11.0	During Drilling	CM
	 				
				_	
	-				
	 				

WATER SAMPLING DATA

SERIAL NO.	ws = 00009
PAGE_OF_	

PROJECT NAME MAOIR SON Dh 1	RI	SAMPLE LOCATION NO. G1045 OR BORING/WELL NO. G1045 SK 2294 SUBTASK PORT PLETED BY
PROJECT NO. 12872832	MAJOR TA	SK 2294 SUBTASK
TECHNICAL CREW C. Maxeiner	D Davin	porT
DATE JUN 20 87	FORM COM	PLETED BY
WEATHERSunny		LEVEL OF PROTECTION A B C (1) *
MEASURING POINT TOP of Rise	METHOD	OF MEASUREMENT <u>Εω</u> Ι
MEASURING POINT ELEV.		IAL WATER LEVEL ELEV
SAMPLING METHOD TEFLON Bails	er TeHor	INITIAL WATER LEVEL 9/10/14" FOR
TIME ELAPSED/FINAL DEVELOPME SAMPLING DEPTH INTERVAL	NT/PURGING	30 TECHNICIAN Co 2/00 PUMPING RATE/SAMPLING
	 	
WATER QUALITY INSTRUMENTS USED	SERIAL NO	. CALIBRATION REFERENCE
1-Orion 210 ph neter	2210	see orion 210 ph meter Calibration logbook 14
2. YSI S-C-T meter	12411	see YSI S-CT meter calibration log book 13
3.YSI Dissolved Oxygen meter	150 × 645	see YSI S-CT METER Calibration log book 13 KCE YSI D.O. METER Calibration lagbook 15
4.		
5.		
FINAL WATER QUALITY INSTRUMENT READINGS		FITTERS DUPLICATE WATER SAMPLING DATA INSTRUMENT READINGS
TEMP (°C) 13.5		TEMP (°C) 13.5
CONDUCTIVITY (umhos/cm) 82 x	10'	CONDUCTIVITY (umhos/cm) 83 x 10'
PH 6.98		PH EH13 9
ЕН 145		
D.O. (mg/1)OTHER		D.O. (mg/1) 3.21
TECHNICIAN TIME ST	ART 1719	TIME FINISH 1742
SAMPLE COLLECTION PERIOD: S'	tart <u>1719</u>	STOP 1742 TECHNICIAN CHIV

*NOTE: FOR LEVELS OF PROTECTION; SEE SITE SPECIFIC SAFETY PLAN FOR DETAILS.

			SERIAL PAGE_C	NO. WS
TOTAL VOLU FIELD FILT SAMPLES CO	UME WATER COLLETERED: YES _NO	ECTEDTIME/729 DLLECTION PERIO	TECH. CON FI	OF CONTAINERS 7
		SAMPLE CON	TAINERS	
QUANTITY	CONTAINER MATERIAL	SAMPLE LABEL SERIAL NO.	PRESERVATIVES	COMMENTS
YOM	6/MS	5000 20	_	UDA
40 ML	"	1 4		V. A
YACAL	/1	22		BNA
YZCAL	li .	1 23		BNA
14.	PLAITIC	24	1+N03	METAL - TOTAL
14.	ľ	25	/tN03	METALS - DUS
IOM	7)	16		MCTMS - DIS PUEFILHURTION
		DOCUMENT	ATION	
SAMPLE SHI LAB ANALYS	PPING CONTAINE	R SEALED & PAC M: YES_NO_	KED: YES <u>NO</u> TIME <u>llo</u> Seria	ECHNICIAN TIME 2300 TECH AL NO LARIGES TECH L NO 2000 TECH
COMMENTS:				

COMMENTS __

GEOLOGIST SIGNATURE

GEOLOGIC LOG

SERIAL NO. GL_____PAGE 1_OF 2

BORING 6-23-87/1200

WELL INSTALLATION 6-23-87/1730WELL PROTECTION 6-23-87/1730

	г	מת גו	NG NO	- C	איו	ንጥሮብ	6-23-87/0	730 PROJECT NO. 12	87283	2		
	T	יד חמי	P (PP)	T R M1	E*	Morris	_{son} Phase	MAJOR TASK 229 G METHOD (S) Air Rotary	2 S	UBTA	SK	
HELPER ELGCES, T	7	τ	T			AMPLE TAINED		CLASSIFICATION SYSTEM: Unified SAMPLE DESCRIPTION	DEPTH OF CHANGE	QP (tsf)	N/6"	REMARK #
								0-6" Topsoil, Darker Red-Brown Clayey SILT Trace Sand, ML, Loess, Dry	6"			
	0											
Naudana (-	-								
- 20				-				(SAA) Gray-Brown @ 20' Moist	20'			1
30												
								Gray-Brown Clayey SILT Trace Sand, LOESS, ML, Moist-Wet				
40			+									
<u>-</u> 50								SAA				2
WEL	L :	INST	ALLE	D:	YES	5 <u>x</u> no_		DATE/TIM	OF	COME	LETI	ONS

JOHN MATHES & ASSOCIATES, INC.

GEOLOGIC DRILLING COMMENTS

			(23 07
BORING NO.	G102D	JMA PROJECT NO. 12872832	DATE 6-23-87

REMARK NO.	REMARKS
1	Encountered soil unit water @ 21.0'.
2	@ 50.0' pulled rods, hole collapsed to 22.0'; went in w/50' of 8" casing (not grouted).
4	Continued open hole drilling in silt, harder drilling.

	WATER LEVELS								
REFERENCE POINT	DATE	TIME	DEPTH (FT.)	COMMENTS	TECH.				
Ground Surface	6-23-87	0815	21.0'	During Drilling	CM_				

COMMENTS

GEOLOGIST SIGNATURE ____

BORING NO.__

GEOLOGIC LOG

G101D

SERIAL NO. GL_____PAGE 1_OF_2

BORING 6-19-87/1430

WELL INSTALLATION $\underline{6-25-87/1500}$ WELL PROTECTION $\underline{6-25-87/1500}$

ELEV DRILLING METHOD (S) Air Rotary												
DEPTH	SAMPLE NO.	SAMPLE INTERVAL	SAMPLE	RECOVERY	JAR NO. BS	JAR INTER - DANIET VAL DENIET	SAMPLE LABEL SERIAL #	CLASSIFICATION SYSTEM: Unified SAMPLE DESCRIPTION	DEPTH OF CHANGE	QP (tsf)	"9/N	
								Brown Limestone, Porous (Driller estimate 100 gpm)	1			
30												
35				-				S.A.A				
40	+	+	+									
45		+	+									
50	+ + + + + + + + + + + + + + + + + + + +	†	+					S.A.A.				

JOHN MATHES & ASSOCIATES, INC.

GEOLOGIC DRILLING COMMENTS

BORING NO. G101D	JM	PROJECT	NO.	12872832	DATE _	6-19-87

REMARK NO.	REMARKS
8	Ø ND W/HNU
	A ND ADM
9	Ø ND w/HNU
	,

WATER LEVELS								
REFERENCE POINT	DATE	TIME	DEPTH (FT.)	COMMENTS	TECH.			
	· · · · · · · · · · · · · · · · · · ·							
((1			

COMMENTS ____

GEOLOGIST SIGNATURE _____

G102D

GEOLOGIC LOG

SERIAL NO. GL____ **PAGE** <u>1</u> **OF** <u>2</u>

BORING 6-23-87/1200

WELL INSTALLATION 6-23-87/1730 WELL PROTECTION 6-23-87/1730

		PF	OJE	CT 1	MAN	E _	Morriso		730 PROJECT NO 1 RI MAJOR TASK _ 229 G METHOD (S) Air Rotary				
HELPER Elders, T	111	SAMPLE NO.	INTERVAL	SAMPLE TYPE	RECOVERY	JAR NO. BO	JAR INTER- DALIAT	SAMPLE LABEL SERIAL #	CLASSIFICATION SYSTEM: Unified SAMPLE DESCRIPTION	DEPTH OF CHANGE	QP (tsf)	"9/N	REMARK #
Proers 1 HELPE													
חציותיים -	55	+ + + + + + + + + + + + + + + + + + + +							Brown-Gray LIMESTONE, Dolomite Dry	55.5			
-60 -60	0	+	+	+					SAA				
65	5	+	+						Dry LIMESTONE				
- 70	D		†							721			
- - 75	5								Red-Brown CLAY & LIMESOTNE w/ Chert Fragments, Wet, Saturated	72'			4 5 6

BORING NO. G102D	TMA PROTECT	NO. 12872832	DATE 6-23-87
BORING NO.	OUR LIVOURCE	NO: ISSTED	DALL

REMARK NO.	REMARKS
4	Encountered H ₂ O @ 72.0' (within clay & Limestone Fragment Cavity).
5	Pulled rods up open hole to 72.0'.
6	(See page 3 of 3)

		NATE	RLEVE	LS	
REFERENCE POINT	DATE	TIME	DEPTH (FT.)	COMMENTS	TECH.
Ground Surface	6-23-87	1030	72.0'	During Drilling	CM
					

SERIAL NO. GL_____PAGE 1 OF 2

		E	ATE	/TIM	E S'	[A]		16-87/093	0 & 6-17-87/0800 PROJECT NO.			SK	 -
ELEV.								DRILLING METHOD (S) Air Rotary					
Tisia		LE NO.	SAMPLE INTERVAL	LE	RECOVERY	NO. BE	AMPLE TAINED		CLASSIFICATION SYSTEM:	rh of	(tsf)	E	IRK #
R Elders,		SAMPLE	SAME	SAMPLE	RECC	JAR	JAR INTER VAL	SAMPLE LABEL SERIAL	SAMPLE DESCRIPTION	DEPTH	ФЪ	N/6'	REMARK
HELPER	 -								Brown Clayey, Silty, SAND				
HEI									w/Gray Silty Sand Lensing				
رنا	-			-		,			(6") SM	3'	•		1
, S				-					Gray @ 3.0'				
Elders,	5			- •						5'			2
•	-			-	•				Gray Fine-Medium SAND w/Silt,				
LEI	L				_				Wet, SM				
DRILLER	-			.	-								
Ω	-		+	.	-					-			
	-10		+		-					-			
. 1	-	-	-						Medium Gravel w/Fine Sand, GP	11'			3
	-	-	1	.	.	!							
	-	+				i				-			
	-	<u>:</u>	-	+						-			
T4	-15	-		+	Ì					-			4
H.	-	+	-	-									5
ı	-	-	-										6
MAKE/MODEL	-	-		-									
/M	-	-		-									
KE	-20												
_					ļ								
RIG	.												
14													
											ļ		
	_25												
	- 25		I										

WELL INSTALLED: YES X NO	DATE/TIME OF COMPLETIONS
COMMENTS	BORING Backfilled 6-17-87
	WELL INSTALLATION_N/A
GEOLOGIST SIGNATURE	WELL PROTECTION N/A

GEOLOGIC	CO

BORING NO. G101D (A) JMA PROJECT NO. 12872832 DATE 6-16 & 17-87

REMARKS
Ø ND w/HNU in drill rods
H ₂ O @ 5.0'
Rod vibrations during drilling
Material falling in on bit.
Pulled rods, hole collapsed to 5.0' (water table) will instal) 8" casing 6-17-87 TOB 15.0' Open Hole 5.0'
6-17-87/0800 Ready to install 8" casing using 10" roller bit hole caved & blew out void under jack stand. Moved hole up 5' Backfilled hole w/spoils

WATER LEVELS									
REFERENCE POINT	DATE	TIME	DEPTH (FT.)	COMMENTS	TECH.				
Ground Surface	7-16-87	0950	5.0'	Encountered During Drilling	CM				
					; ;				

SERIAL NO. GL_____PAGE_1OF_2

<u> </u>	
BORING NO. Gloid	
DATE/TIME STARTED 6-19-87/0600 PROJECT NO. 13	2872832
PROJECT NAME Morrison Phase 1 RI MAJOR TASK 229 ELEV. DRILLING METHOD (S) Air Rotary	2SUBTASK
SAMPLE RETAINED LINE Unified Unified	1 OF 3E 5E 5K 4

		_											
lders, T	DEPTH	MPLE NO.	SAMPLE INTERVAL	SAMPLE TYPE	RECOVERY	Š	JAR INTER - DAUINED DAUINED	SAMPLE LABEL SERIAL #	CLASSIFICATION SYSTEM:	DEPTH OF CHANGE	(tsf)	"9/N	REMARK #
回	DE	SA	SAI	SA	RE	JAR	ANA	SA LA SE	SAMPLE DESCRIPTION	CH	Q.	×	띪
HELPER Elders,									Gray-Brown Limestone, Slightly Porous				
Elders, L	-			-									
•	200	+	}		·								
DRILLER	-		}						S.A.A.				
	225 Inte	rva	l Ch	ange									
	-								Gray-Brown Limestone				
	-	†	+	+									
IR T4	230	1							More Gray @230'	230'			14
KE/MOI	235												1.5
RIG MAK									Gray-Brown Limestone	237'			15
×				Ī			Ì		Gray-Green Shale Trace Sand]			
					İ				Partings, Possible Weathered				
	240								Gray-Green Shale, Hard	239			
(1	-				-		ļ	TOB @ 239.0'				

IONS
25-87 /1500
87/150 0

BORING NO. G101D	TMA	PROTECT	NO	12872832	DA	ጥድ	6-19-87
BORING NO.	JEM	FROODCI	MO •		<i>U</i> A		0 13 07

REMARK NO.	REMARKS
13	Ø ND w/HNU
14	Harder drilling @230'
15	Hard drilling @ 236'
16	Encountered shale , medium drilling @237'
17	Compent shale 3239'. Bit felt burnt. Driller terminated hole. Total estimated of H ₂ O pumped out of hole 12000 qallons. H ₂ O used ± 50 qallons.

	WATER LEVELS									
REFERENCE POINT	DATE	TIME	DEPTH (FT.)	COMMENTS	TECH.					
Ground Surface	6-19-87	1500	6.0'	Open hole to 239.0'	CM					
		<u> </u>								

COMMENTS_

GEOLOGIST SIGNATURE

GEOLOGIC LOG

SERIAL NO.	GL
PAGE 1_OF_2	

BORING 6-19-87/1430

WELL INSTALLATION 6-25-87/1500 **WELL PROTECTION** <u>6-25-87/15</u>00

		P	ROJI	ECT 1	MAI	E	Morris	on Phase	0600PROJECT NO.11 RIMAJOR TASK229G METHOD (S)Air Rotary				
ders, T	TH	16	SAMPLE INTERVAL	SAMPLE TYPE	RECOVERY	RE ON	JAR INTER - RICHAN VAL	SAMPLE LABEL SERIAL #	CLASSIFICATION SYSTEM: Unified	DEPTH OF CHANGE	(tsf)	E	REMARK #
R	DEPTH	SAM	SAM	SAM	REC	JAR	JAF	SAMPLI LABEL SERIAI	SAMPLE DESCRIPTION	DEP	å	19/N	REM
HELPER Elders,	<u> </u>								Brown-Light Brown Limestone, Porous (100 gpm)				
Fiders, L	- - 75												
DRILLER EL	_	+	1	.									
	-		}						Gray-Brown Limestone, Slightly	90'			10
	<u>1</u> 00 -	+	†	+		1			Porous (Driller 80 gpm Recovery)				
									Gray-Brown Limestone				
	1.25	+	+	†					cray brown Bracescone				
TUNE / MODEL	L50			+									
KIC			+	+					S.A.A.				
	LT 5	+											12

BORING NO. G101D	JMA PROJECT	NO. 12872832	DATE 6-19-87

REMARK NO.	REMARKS
10	Change in porcsity
11	Change in porosity Ø ND w/HNU
12	Ø ND w/HNU

WATER LEVELS									
REFERENCE POINT	DATE	TIME	DEPTH (FT.)	COMMENTS	тесн.				
									

SERIAL NO.	GL
$\mathbf{PAGE}\underline{^{1}}_{}\mathbf{OF}\underline{^{2}}_{}$	

		E	ORI	NG N	0	G1	03S	 5-24-87/07	30 PROJECT NO. 1	297293	ار د		
		L	ROJ	/TIM ECT :	e s Nam	E _	Morr	ison Phas	e 1 RI MAJOR TASK 22	¹⁹² _ SI	UBTA	SK	
		E	LEV	•				DRILLING	G METHOD (S) Air Rotary				
Elders, T	Н	10	H			NO.ES	AMPLE TAINED	#=	CLASSIFICATION SYSTEM:	Ö	(tsf)		ARK #
,		SAMPLE	SAMI	SAMPLE	REC	JAR	JAR INTER VAL	SAMPLE LABEL SERIAL	SAMPLE DESCRIPTION	DEPTH	QP	N/6"	REMARK
HELPER	-								Brown SILT w/Clay, Wet	-			
피	-		•	<u> </u>	<u> </u>				Red-Brown Clay w/Silt, CH,	27'			
Elders,	-								Damp	-			
	– 30 −									30.8			
DRILLER	_								Brown LIMESTONE, Damp Porous	-			
DR	-												
	_35 _		j						TOB @ 32.0'				
	_	-		-	-		İ						
	-	+		-	- -								
T T4	-	+		-	-								
 	-	+			-								
MAKE/MUDEL	-				-								
KE/I	- 	+	<u> </u>						· · · · · · · · · · · · · · · · · · ·				
+			+										
RIG		†	1	†	.								
	.									-			
Ļ	_	t	ļ										

WELL INSTALLED: YES X NO	DATE/TIME OF COMPLETIONS
COMMENTS	BORING 6-24-87/1100
	WELL INSTALLATION 6-24-87/1600
GEOLOGIST SIGNATURE	WELL PROTECTION 6-24-87/1600

BORING NO. G103S	JMA PROJECT NO. 12872832	DATE 6-24-87
------------------	--------------------------	--------------

	DEMARKS
REMARK NO.	REMARKS
	
	

WATER LEVELS							
REFERENCE POINT	DATE	TIME	DEPTH (FT.)	COMMENTS	TECH.		

COMMENTS _____

GEOLOGIST SIGNATURE

BORING NO. G104S

GEOLOGIC LOG

SERIAL	NO.	GL_	
PAGE $rac{1}{-}$ OF	2		

BORING <u>6-18-87/1330</u> **WELL INSTALLATION** <u>6-18-87</u>/1430

WELL PROTECTION 6-18-87/1430

	,	E.	LEV.						G METHOD (S) Air Ro	7				
א הדמה א	ркртн	SAMPLE NO.	SAMPLE INTERVAL	SAMPLE	RECOVERY	JAR NO. HO	JAR INTER - DANIER VAL	SAMPLE LABEL SERIAL #	CLASSIFICATION SYSTEM:UnifiedSAMPLE DESCRIPTION	DEPTH OF CHANGE	QP (tsf)	.9/N	· 1	DEMADK #
Yazrau		+ +							Brown Silty SAND Trace CL, SM	4.				
UKINDER	5	+							Brown Sand w/Gravel, Silt Wet (H ₂ O)					1
1	LO	-	-	-	-				SAA					
	.5	- - - - - - - - - -		-										
	20	+ + +							Brown Weathered LIMESTONE	19'				2
					-				Brown LIMESTONE (Dolomite) Very Weathered	22'				4 5 6
	25			-	-				TOB @ 23.9' June 18, 1987/1330					

BORING NO	G104S	JMA PROJECT NO.	12872832	DATE 6-17 c 10

REMARK NO.	REMARKS
1	Very soft drilling, possible H20 @ 4.0' Encountered free H20 @ 8.0'
2	Firm drilling, possible weathered rock @ 19.0'
3	No cutting return @ 20'
4	Set 23' of 8" casing (23' below ground surface)
5	Ø ND w/HNU & C GA indicator
6	June 18, 1987/1230 * Install well in G104S reamed casing & hole out to 23.9'
	· · · · · · · · · · · · · · · · · · ·

WATER LEVELS							
REFERENCE POINT	DATE	TIME	DEPTH (FT.)	COMMENTS	TECH.		
Ground Surface	6-17-87	1045	8.0'	Free H ₂ O during drilling	CM_		
Ground Surface	6-18-87	0800	15'4"	In 8" casing (possible casing			
				plugged)	СМ		
Ground Surface	6-18-87	1330	+11.0'	Rising in 8" casing	СМ		
Ground Surface	6-18-87	1340	+ 9.0'	Rising in 8" casing	СМ		
	-						
	ļ						

COMMENTS ____

GEOLOGIST SIGNATURE _____

GEOLOGIC LOG

SERIAL NO.	GL
PAGE <u>1</u> OF <u>2</u>	

BORING 6-22-87/1430

WELL INSTALLATION 6-22-87/1600 WELL PROTECTION 6-22-87/1600

		P	ROJE	ECT 1	MAI	E _	Morriso	n Phase 1	0 & 6-18-87/0800PROJECT NO	92 S I	UBTA:	SK	
Elders, T	рертн	SAMPLE NO.	SAMPLE INTERVAL	SAMPLE TYPE	RECOVERY	JAR NO. HO	JAR INTER - DANIEL VAL	SAMPLE LABEL SERIAL #	CLASSIFICATION SYSTEM: Unified SAMPLE DESCRIPTION	DEPTH OF CHANGE	QP (tsf)	N/6"	REMARK #
HELPER Elders	-								Brown Silty Clay SAND, SM				
ER Elders, L	- 5 	+		-					Brown Sandy Gravel w/Silt Moist	4'			
DRILLER	- - 10				-				Brown-Dark Brown, Wet	8'			1
	-		+ + + + + + + + + + + + + + + + + + + +										
DEL IR T4	-15												
G MAKE/MODEL	-20	+							Brown Clay, Sand, Weathered Limestone	19'			2
RIG		+							Brown Weathered Limestone	22'			3 4 5
- i_	-25								Brown Weathered Limestone Better Drilling				

BORING NO. G104D	JMA	PROJECT	NO	12872832	DATE .	<u>6-17 & 18-87</u>
------------------	-----	---------	----	----------	--------	-------------------------

REMARK NO.	REMARKS
1	Encountered H ₂ O @ 8.0'
2	No return on cuttings, weathered rock zone
3	Set 22'-8" casing (22' below ground surface)
4	Ø ND w/HNU & combustible gas indicator in 8" casing
5	June 18, 1987 advanced hole for 6" casing 0800 began drilling

WATER LEVELS											
REFERENCE POINT	DATE	TIME	DEPTH (FT.)	COMMENTS	TECH.						
Ground Surface	6-17-87	1250	8.0	Encountered During Drilling	CM						
Ground Surface	6-18-87	0800	10'7"	In 8" Casing	CM						

SERIAL NO. GL_____PAGE 1 OF 2

BORING 6-22-87/1000

WELL INSTALLATION 6-22-87/1200
WELL PROTECTION 6-22-87/1200

		Ľ	ATE.	NG NO	E S	ΓAI	RTED	6-22 - 87/08	PROJECT NO	12872	832		
			ROJ	ECT 1	MAN	Ε_	Morr	DDTTTTM	MAJOR TASK 2	2292 S	UBTA	SK	
Г		1 •	LEV	•		C	AMDIE	DKILLING	G METHOD (S) Air Rotary				
HELPER Elders, T	рертн	SAMPLE NO	SAMPLE	SAMPLE TYPE	RECOVERY	JAR NO. E.	JAR INTER - DANIET VAL	SAMPLE LABEL SERIAL #	CLASSIFICATION SYSTEM: Unified SAMPLE DESCRIPTION	DEPTH OF	QP (tsf)	N/6"	REMARK #
DKIPDER TITLES TO	- 35								Dark Brown Silty Fine SAND Trace Clay, SM, Wet Dark Brown Silty Fine SAND, Trace Clay, SM, Wet				
	50								Dark Brown Silty Fine Sand Trace Clay, Wet, SM TOB @ 53.0'				5
W	ELI	. I	NST	ALLE	D:	YE:	5 <u>×</u> NO_	_	DATE/TI	ME OF	COMP	LETI	ONS

COMMENTS _____

GEOLOGIST SIGNATURE

BORING NO. G105S	AMT.	PROJECT	NO.	12872832	DATE	6-22-87
BORING NO.	OLL	LICOLOT	.,			

REMARK NO.	REMARKS
5	(see page 1 of 2)

	WATER LEVELS										
REFERENCE	POINT	DATE	TIME	DEPTH (FT.)	COMMENTS	TECH.					

COMMENTS ____

GEOLOGIST SIGNATURE

GEOLOGIC LOG

SERIAL	NO.	GL	
PAGE 1_C	F_2		

BORING 6-22-87/1000

WELL PROTECTION 6-22-87/1200

								DRILLI	1 RI MAJOR TASK 229 NG METHOD (S) Air Rotary				
R Elders, T	рертн	SAMPLE NO.	SAMPLE	SAMPLE TYPE	24	RE	JAR INTER - DANIEL VAL	SAMPLE LABEL SERIAL #	Unified	DEPTH OF CHANGE	QP (tsf)	.9/N	REMARK #
HELPER	 - -								Brown LIMESTONE, Fractured Very Porous				6
DRILLER Edlers, L	30		-										
REd	_		†		•				Brown Fractured LIMESTONE,				7
TILE	_				-				Porous, Weathered Brown LIMESTONE Dry				
DRJ	-				-				BIOWIT DIFFESTORE DIV				
ļ	<u> </u>			.	-								
il	-	+	1	+									
	-	†	1						Brown-Gray LIMESTONE, Dolomite				8
	_	1	Ī	Ī					Porous				
7 T4	-40	+											
IR	-	+											
DEL	-			İ									
MAKE/MODEL	-	+		+									
AKE	-45	-	+										
RIG A	-	+	1						SAA				
R		†	-	Ţ									
		+	+	+									
-	- 50	1	+	+					TOB @ 50.0'				

BORING NO. G104D	JMA PROJECT NO. 12872832	DATE 6-18-87
BURING NU.	JPA PRODUCT NO.	DAIL

REMARK NO.	REMARKS
6	Highly fractured zone, producing large amounts H2O
7	Set 6" casing 30'7" below ground surface
	Grout Mix-58 gallon H ₂ O
	6 sacks cement (port type 1)
	32 #'s bentonite (aqua gel)
8	Encountered H ₂ O @ 37.0' from 31-37' Limestone was dry
	upper H2O was blocked off

WATER LEVELS										
REFERENCE POINT	DATE	TIME	DEPTH (FT.)	COMMENTS	TECH.					
Ground Surface	6-22-87	1345	37.0	During Drilling	CM					
										

BORING NO. G105D

WELL INSTALLED: YESX_NO__

GEOLOGIST SIGNATURE _____

COMMENTS _____

GEOLOGIC LOG

SERIAL NO.	GL	
PAGE $\frac{1}{}$ OF $\frac{2}{}$		

DATE/TIME OF COMPLETIONS BORING 6-21-87/1545

WELL INSTALLATION 6-21-87/1700 **WELL PROTECTION** 6-21-87/1700

		P	ROJE	ECT 1	5 & 6-21-87/1430PROJECT NO. 12 1 RI MAJOR TASK 22 G METHOD (S) Air Rotary			SK				
I /SIanta /	рертн		SAMPLE INTERVAL	SAMPLE TYPE	VERY	 AMPLE TAINED		CLASSIFICATION SYSTEM: Unified SAMPLE DESCRIPTION	DEPTH OF CHANGE	QP (tsf)	N/6"	REMARK #
HELPER	•							Brown LIMESTONE, Silty Weathered, Moist				
31	-							weathered, Moist				
761777	-			-	-							
41	-3 0										.	
חאזרואר	-			.]	-							
באר באר	-											
!	-35	-	+	.	-							
		į	+	+								
-				.	.	j			_			
	40	+										
	40	F	-					(Brown Limestone, Wet, Free H ₂ C	41'			4
1		-	+	+				Brown Limestone, Dolomite Wet				4 5 6
		<u></u>		-				Fractured				
	45	+	-						-			
2			+	+				Yellow-Green CLAY (Gummy)	46'			7
1		+						Very Wet	-			
1	50		1	-				Brown LIMESTONE, Dolomite	49'			
								TOB @ 55.9'				

BORING NO. G105S JMA PROJECT NO. 12872832 DATE 6-16-87

REMARK NO.	REMARKS							
4	Encountered H ₂ O during drilling. Stopped to set 6" casing,							
	cave to 39.0'							
	Casing TOB @ 38'6"							
	Grout was 66 gals H ₂ O							
	6.6 sacks cement (Port Type 1)							
	37# Bentonite (Aqua Gel)							
5	Ø ND w/HNU in berehole							
6	June 21, 1987/1450 began drilling to advance hole encountered							
	H ₂ O @ 42.0'.							
7	Encountered squeeze clay @ 46'-49'							

	WATER LEVELS									
REFERENCE POINT	DATE	TIME	DEPTH (FT.)	COMMENTS	TECH.					
Ground Surface	6-16-87	1500	41.0'	Encountered H ₂ O	CM					
Ground Surface	6-21-87	1430	42.0'	11 11	CM					
										
		<u> </u>								
	 									
	 	·								
	 	<u> </u>								
	l									

SERIAL NO.	GL
PAGE 1_OF 2	

		DATE/TIME STARTED 6-16-87/1245 & 6-21-87/1430PROJECT NO. 1 PROJECT NAME Morrison Phase 1 RI MAJOR TASK 229										
			ECT	NAM	E _	Morri	DRILLIN	G METHOD (S) Air Rotary	S	UBTA	SK	
rs, T		E NO.	щ	/ERY	S RE	JAR INTER - DANIET - VAL	# 18	CLASSIFICATION SYSTEM:	Ö	(tsf)		# *
HELPER Elders	DEPTH	SAMPLE NO SAMPLE INTERVAL	SAMPI	RECOL	JAR 1	JAR INTEI VAL	SAMPLE LABEL SERIAL	SAMPLE DESCRIPTION	DEPTH CHANGE	OP (.9/N	REMARK
EPE-		-	1	-				Light Brown Silt w/Clay, Trace				
븨		+	+	-				Gravel, FILL		}		
7		+	+					Gravelly, FILL, ML	3'			1
		+	.}						-			
	5	+	+						.			
4		+	<u> </u>						1			
חעדוחה		†	-	-					1 1			
3		†	+									
-		†		-								
├ -:	10		†	-				Light Brown Silt w/Shale	10'			
		1	† †	-				Fragments (possible silty		}		
		I						shale) TILL, Very Dry, ML				
		I		_]			
- 	5											
		ļ	ļ .	-								
		1	ļ .	. }								
i 2				-								
		1	-	.			•		19'			
_2	0	+	+ +	.				Light Brown LIMESTONE, Very	1 19			2
-	;	+		.				Dry	21'			3
		+		.								
}		+	}	.					23'			
-		†		-				Moist Brown LIMESTONE, Slightly				
1 2	-	}		1		ŀ		Weathered	1			1

WELL INSTALLED: YES X NO	DATE/TIME OF COMPLETIONS
COMMENTS	BORING 6-21-87/1545
	WELL INSTALLATION 6-21-87/170
GEOLOGIST SIGNATURE	WELL PROTECTION 6-21-87/1700

BORING NO. G105D JMA PROJECT NO. 12872832 DATE 6-16-87

REMARK NO.	REMARKS
1	Fill encountered @ 3.0'
	m
2	Top of rock @ 19.0' dry
3	Moist possible H ₂ O @ 20'10"

WATER LEVELS									
REFERENCE POINT	DATE	TIME	DEPTH (FT.)	COMMENTS	TECH				

COMMENTS ____

GEOLOGIST SIGNATURE _____

GEOLOGIC LOG

SERIAL NO. GL_____PAGE 1_OF 2_

BORING 6-24-87/1430

WELL INSTALLATION 6-24-87/1515
WELL PROTECTION 6-24-87/1515

	E	PROJI	ect 1	E S'	TAF E _	Morri	ison Phase	PROJECT NO. 1 RI MAJOR TASK METHOD (S) Air Rotary	22	92 S			
DEPTH	SAMPLE NO.		SAMPLE TYPE	VER	JAR NO. Ho	JAR INTER - MAL VAL	SAMPLE LABEL SERIAL #	CLASSIFICATION SYSTEM: Unified SAMPLE DESCRIPTION		DEPTH OF CHANGE	QP (tsf)	n/e"	REMARK #
- 10 - 15 - 20								Gray-Brown Loose Rock, Gra & Sand, Disturbed, FILL Brown LIMESTONE, Dolomite Brown Limestone, Dolomite Damp (Possible H20 Zone) Gray-Brown LIMESTONE, Dolomite Wet		4'			1

BORING NO. G106D	JMA PROJEC	T NO. 12872832	DATE 6-24-87

REMARK NO.	REMARKS
1	Encountered H ₂ O @ 17.0'
	
-	

	WATER LEVELS									
REFERENCE POINT	DATE	TIME	DEPTH (FT.)	COMMENTS	TECH.					
Ground Surface	6-24-87	1300	17.0'	During Drilling	CM					
Ground Surface	6-24-87	1500	7'5"	In Open Bore Hole	CM					
				L						
										
										
	ļ -									
	L		L 1							

COMMENTS __

GEOLOGIST SIGNATURE ____

GEOLOGIC LOG

SERIAL NO. GL_____PAGE 1_OF 2

BORING 6-24-87/1430

WELL INSTALLATION 6-24-87/1515
WELL PROTECTION 24-87/1515

		_		NG NO				6-24-87/12	PROJECT NO. 12872832
		т	DO TE	30m .			Morrisc	_{on Phase I}	NI MAJOR TASK 2292 SUBTASK -
		E	LEV	·	. va 24, 2.	- -		DRILLING	G METHOD (S) Air Rotary
HELFER - FLYCLS, 1	рертн			SAMPLE TYPE	RECOVERY	JAR NO. Bo	JAR INTER - NIET VAL	SAMPLE LABEL SERIAL #	CLASSIFICATION SYSTEM: Unified
177			_						Gray-Brown LIMESTONE, Dolomite
	- ;	-		-					Wet.
724555	. 30								TD 28.0'
מבירים	-	-	-	-	-				
-	- 35		-		-			•	
\ 				-					
-			<u> </u>	-					
			+						
	-								
	-								
L	ner.	, ·	INCT	A L.L.E.	n.	YE:	S X NO		DATE/TIME OF COMPLETIONS

BORING NO. G106D	JMA PROJECT NO	12872832	DATE 6-24-87

REMARK NO.	REMARKS
2	At completion of drilling, pulled rods & measured H ₂ O @ 7'5"
	Hole collapsed to 27.5'
	
	·

WATER LEVELS								
DATE	TIME	DEPTH (FT.)	COMMENTS	TECH.				
6-24-87	1500	7'5"	In Open Hole	CM				
								
	DATE	DATE TIME	DATE TIME DEPTH (FT.)	DATE TIME DEPTH COMMENTS (FT.)				

PROJECT NO.	12872	832	DRILLER _	SUBCC	ONTRACTOR
MONITORING WELL NO	o	G104S	DATE INST.	ALLED	6/18/87
GROUND SURFACE	2.9°		STEEL	- PROTEC	CTIVE CASING
Depth Below					
Ground Surface	_1.0'		PREMI	X CONCE	RETE
	2.1		8 DI	. STEEL	CASING
	2.5		BENTO	ONITE/CE	MENT GROUT
			2° DIA	NIATS A	ESS STEEL RISER
	3.4'			. SIAINL	LOS SILEL RISER
			BENTO	ONITE SE	AL
	c a:			J 0-	
	6.4				
	7 .2 '				
	<u></u>				
				. 0.010 S Less Ste	EL SCREEN
			WB-4	SAND	
	<u>17.7'</u>		* 1 		
	22.0				
	23.9		BENTO	DNITE SE	AL
NOT TO SCALE					
BOREHOLE DIAMETER		10"	SANDPACK	WB	-40
SCREEN LENGTH	10.	5	RISER LENGTH		9.0

PROJECT NO.	1287	2832	DRILLER	SUBCC	NTRACTOR
MONITORING WELL NO	o	G103S	DATE INSTA	LLED	6/24/87
	2.4				
GROUND SURFACE \			STEEL	PROTEC	CTIVE CASING
SURFACE					_
Depth Below Ground Surface			PREMI	K CONC	RETE
	1.0				
	2.6	制版			
			BENTO	NITE/CE	MENT GROUT
			2. DIA	STAINI	.ESS STEEL RISE
	7.5		2 517	· OTAIRE	LOG GILLE MIGE
			- PENTO	NITE SE	: Al
			BENTO	MIL 3L	. ^ L
	10.0		ı		
	11.5				
					SLOTTED
			SIAINL	ESS SII	EEL SCREEN
		-	WB-40	SAND	
			110 40	OAN	
	27.5 [']				
	28.5		DENTO	NITE SE	Α1
	32.0		BENTO	MILE 3E	-AL
NOT TO SCALE					
BOREHOLE DIAMETER		10" SA	NDPACK	w	B-40
SCREEN LENGTH					

PROJECT NO.	12872832	DRILLER SUBCONTRACTOR
MONITORING WELL	NO. G102D	DATE INSTALLED 6/23/87
	2.1'	٦.
		719
GROUND		STEEL PROTECTIVE CASING
SURFACE		
Depth Below Ground Surface	1.0	PREMIX CONCRETE
	2.9	2 DIA. SCHEDULE 40 PVC RISE
		BENTONITE/CEMENT GROUT
	36.3	8" DIA. STEEL CASING
	49.0	2' DIA. STAINLESS STEEL RISE
	50.0	
		BENTONITE SEAL
	54.0	
	34.0	
		1964
	66.3	
		(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
		2 DIA. 0.010 SLOTTED
		STAINLESS STEEL SCREEN
		WB-40 SAND
	79.0	AW AW
	82.2	NATURAL CAVE-IN
		NATURAL CAVE-IN
	99.0	MARIO CONTRACTOR CONTR
UOT TO SOME		
NOT TO SCALE	. -	W
SOREHOLE DIAMET	ER6"	30' STAINLESS STEEL.
CREEN LENGTH	15.9'	RISER LENGTH 32.1' PVC

PROJECT NO.	12872832	DRILLER _	SUBCONTRACTOR
MONITORING WELL	NOG101D	DATE INST	ALLED 6/25/87
	2.5	-	
	2.0	<u> </u>	
GROUND		STEE	L PROTECTIVE CASING
SURFACE	0.7'	,	
Depth Below		PREM	MIX CONCRETE
Ground Surface	1.0		A. STEEL CASING
	2.5		
	17.0 21.0	6 DI	A. STEEL CASING
	100.0	BENT	TONITE/CEMENT GROUT
	166.0	STAIL	NLESS STEEL STABILIZER
		BENT	TONITE SEAL
	176.0		
		WB-	40 SAND
	186.0	2 Di	A. STAINLESS STEEL RIS
		BEN1	TONITE SLURRY
	\$		
	201.0 220.0	STAIN	NLESS STEEL STABILIZER
	223.0	6.75 to 1.55 t	
•	_	WB-	40 SAND
		- 2: 0	A. 0.010 SLOTTED
			NLESS STEEL SCREEN
	—		
	239.0		
NOT TO SCALE			
BOREHOLE DIAMETE	R6"	_ SANDPACK	WB-40
SCREEN LENGTH	16.0	_ RISER LENGTH	225.2

APPENDIX C WELL CONSTRUCTION DIAGRAMS

PROJECT NO	12872832	DRILLER SUBCONTRACTOR
MONITORING WELL	40. <u>G104</u>	DATE INSTALLED 6/22/87
GROUND SURFACE	0.1	STEEL PROTECTIVE CASING
Deptin Below Ground Surface		PREMIX CONCRETE
divind Sarrace	1.0	2" DIA. PVC RISER
	2.5	
	3.0	BENTONITE/CEMENT GROUT
		6" DIA. STEEL CASING
		2" DIA. STAINLESS STEEL RISER
	26.0	
	30.5	
	32.5'	BENTONITE SEAL
	33.0	
	— —	2 DIA. 0.010 SLOTTED STAINLESS STEEL SCREEN
		- STAIRCESS STEEL SCREEN
		- WB-40 SAND
		- SAC - SAC - SAC
	49.0	
	50.0	
NOT TO SCALE		
BOREHOLE DIAMETER	R6"	SANDPACK WB-40 30.0 STAINLESS STEEL,

PROJECT NO.	128728	332	DRILLER	SUBCONTRACTOR
MONITORING WELL N	o. <u> </u>	G105S	DATE INSTAL	LED <u>6/22/87</u>
	1.6'			
GROUND SURFACE			- STEEL	PROTECTIVE CASING
Depth Below Ground Surface	1.0		PREMIX	CONCRETE
	3.4		- BENTON	NITE/CEMENT GROUT
	4.0		2° DIA.	STAINLESS STEEL RISE
	7.0'		- BENTON	NITE SEAL
	<u> </u>			
	8.0			
				0.010 SLOTTED ESS STEEL SCREEN
			— WB−40	SAND
	23.0' 24.0'		- NATUDA	AL CAVE IN
	<u>53.0'</u>		NATUHA	AL CAVE-IN
NOT TO SCALE				
BOREHOLE DIAMETER		10" SAN	IDPACK	WB-40
CREEN LENGTH	16.0	, RIS	ER LENGTH	9.6

PROJECT NO.	12872832	 	DRIL	_ER	SUBC	ONTRACTOR
MONITORING WELL N	o. <u>G10</u>	5 D	DATE	INSTAL	LED	6/21/87
GROUND SURFACE	2.3'	A		STEEL	PROTE	ECTIVE CASING
Depth Below Ground Surface	1.0			PREMI	CONC	CRETE
	2.8					
	23.0			BENTO	NITE/C	EMENT GROUT
				2" DIA.	STAIN	ILESS STEEL RIS
				BENTO	NITE S	EAL
	28.0 32.2 32.2 32.2 32.2 32.2 32.2 32.2 32			6" DIA.	STEE	L CASING
	38.5			WB-40	SAND	
						SLOTTED TEEL SCREEN
	48.0			NATUR	AL CAV	E-IN
	55.9			VOID		
NOT TO SCALE						
BOREHOLE DIAMETER	6"	SA	NDPAC	:к	WE	3-40
SCREEN LENGTH	15.9°	RIS	SER LE	ENGTH		34.4

PROJECT NO.	12872	832	_ DRILLER	SUBC	ONTRACTOR
MONITORING WELL N	10	G106D	_ DATE INS	TALLED	6/24/87
	2.3		`		
			3		,
GROUND SURFACE \			STEE	L PROTE	CTIVE CASING
			· ·		_
Depth Below Ground Surface			PREM	MIX CONC	RETE
	1.0		 		
	2.7'				
			BEN1	ONITE/C	EMENT GROUT
			1		
			2. DI	A. STAIN	LESS STEEL RISE
	4.0'		1		
			RENT	ONITE S	FΔI
	0.01			011112 0	
	6.0'			si .	
	6.5	— —			
					SLOTTED
			STAIN	ILESS ST	EEL SCREEN
	ı				
			WB-4	O SAND	
	22.5° 25.5°				
			BENT	TONITE S	EAL
	28.0				
NOT TO SCALE					
BOREHOLE DIAMETER		6 " s	NDPACK	w	B-40
CREEN LENGTH	16.0	RI	SER LENGT	Н	8.8

APPENDIX D

WELL DEVELOPMENT AND GROUNDWATER SAMPLING DATA FORMS

WELL DEVELOPMENT & PURGING GENERAL DATA

SERIAL NO. WDG 00008 PAGE OF

PROJECT NAME Momison Ph 1 RT PROJECT NO. 12872832 DATE JUN 27 81 FORM COMPLETED BY		
WELL CONSTRU	ICTION	
TOTAL DEPTH (FT) 239 GRAVEL PACK INTERVAL (FT) 239-200' WELL PROTECTOR: YES NO FLUID INJECTED DURING DRILLING (QUANTITY)	PADLOCK NO//A	i)_Z''
WATER VOLUME DATA	WATER VOLU	MES
DATE OF MEASUREMENT JUN 27 187	TOTAL	VOLUME
MEASURING POINT TOD OF Riser		FT ³ GALS 37.2/
WATER LEVEL INSTRUMENT USED EWI	GRAVEL PACK	15.90
INTIAL WATER LEVEL (FT) 11' 31/2"	DRILLING FLUIDS	0 6
LINEAR FEET OF WATER 228		
LINEAR FEET SATURATED GRAVEL PACK 38		
NOTE: QUANTITIES CALCULATED PRIOR TO DE	VELOPMENT	
METHOD OF DEVELOPMENT	- MINIMUM <u>80</u> MAXIM	•

	-		SERIAL PAGE(NO. WS
FIELD FIL	UME WATER COLLETERED: YES_NO	TIME \$ 195	TOTAL NO.	of containers 7 ILTER TYPE BAVIE
		SAMPLE CON		
QUANTITY	CONTAINER MATERIAL	SAMPLE LABEL SERIAL NO.	PRESERVATIVES	COMMENTS
10 ML	GIASS	56000 27		UUA
4. Mc	,	1 28		VOA
YZCAL	/s	29		BNA
1/2 GAL	le	30		BNA
12.	PHITIC]]]	HNO3	Merals-Tural
12.	1(32	HNO3	METALS - DISS
Ign	e t	V 33		PriFiltration
		DOCUMENT	ATION	
SAMPLE SHI	IPPING CONTAINE SIS REQUEST FOR CUSTODY FORM:	R SEALED & PAC M: YES_NO_ YES_NO_ TI	KED: YES <u>´</u> NO TIME <u>2300</u> SERI	ECHNICIANTIME \$\frac{1}{2} \infty TECH_{C}^{\text{C}} AL NO. \$\frac{2315}{2735} TECH_{C}^{\text{C}}
		-		
				
				
				
				

DATE	PUMP TYPE	SERIAL NO.	PUMP TECHNICIAN
6/27	CONTRACTOR	_	CM-
"/	(20,000,000)		
-			

					WA	TER	REMO	VAL	DA	TA	
DATE	PUMP ON	PUMP OFF	PUMPING RATE (GPM)	INCREMENTAL GALLONS REMOVED	TOTAL GALLONS REMOVED	INCREMENTAL WELL VOLUMES REMOVED	TOTAL WELL VOLUMES REMOVED	PUMP INTAKE LEVEL	WATER LEVEL BEFORE PUMPING	WATER LEVEL AFTER PUMPING	COMMENTS
6/27	1650	1658	11.3						9'	9'	
										i	

WELL DEVELOPMENT & PURGING GENERAL DATA

SERIAL NO. WDG 00010

PROJECT NAME Morr. SON ph 1 RI PROJECT NO. 12872832	BORING/WELL NO	61040
PROJECT NO. 12872832 '	MAJOR TASK 2294	SUBTASK
DATE JUN 27'87 FORM COMPLETED BY	C42/00	
WELL CONSTRU	JCTION	
TOTAL DEPTH (FT) 51.13 GRAVEL PACK INTERVAL (FT)	BOREHOLE DIAMETER	6"
GRAVEL PACK INTERVAL (FT)	WELL DIAMETER (ID)	(IN) 2"
WELL PROTECTOR: YES NO	PADLOCK NO. N/A	·/
FLUID INJECTED DURING DRILLING (QUANTITY	1) Air	
WATER VOLUME DATA	WATER VO	DLUMES
71 77 77	TOTAL	VOLUME
DATE OF MEASUREMENT JUN 27 87		FT ³ GALS
MEASURING POINT Top of Riser		30./2
WATER LEVEL INSTRUMENT USED EWT	GRAVEL PACK	4.53
INTIAL WATER LEVEL (FT) 9'1"	DRILLING FLUI	DS & 2
LINEAR FEET OF WATER 40'		36.57
LINEAR FEET SATURATED GRAVEL PACK	,	
NOTE: QUANTITIES CALCULATED PRIOR TO DE	EVELOPMENT	
DEVELOPMENT C	RITERIA	
	T-(10)	
METHOD OF DEVELOPMENT Contractors Dump		
WATER QUALITY MEASUREMENTS: YES / NO		_
WATER VOLUME TO BE REMOVED (GALS) 36.5	MINIMUM 33 MAX	KIMUM // O
NOTE: DEVELOPMENT TO BE PERFORMED IN AC WELL DEVELOPMENT PLAN.	CORDANCE WITH PROJ	ECT SPECIFIC
WEDD DEVELOPMENT TERM.		
COMMENTS		
	· · · · · · · · · · · · · · · · · · ·	
		

SAMPLE CONTROL SHEET

			-000-0
SERIAL	NO.	SCS_	00002
PAGE	OF _		

PROJECT NAME Morrison PH , RI	DATE
PROJECT NO. /2872832	SAMPLER CME
SAMPLE LOCATION NO. G1045	

			T	т		
SAMPLE NO.	SAMPLE	LABEL NO.	C.O.C.	NO.	SHIPPED	LAB ANALYSIS REQUEST NO.
UOA	54	000 20	260	55	JUN 29 '87	UAR 2665
VOA	}	21				
BNA		22				
BNA		23				
METALS-TOTAL	·	24				
METALS-DISI		25				
Drefiltration	_ \	26	V		UY	W
				}		
			 .			
						
						
						
						

WELL DEVELOPMENT & PURGING WATER QUALITY/WATER REMOVAL

SERIAL	NO.	WD .	00008
PAGE			

PROJECT NAME Wiscr. SON Dh 1 RI	BORING/WELL NO. 6(01)
PROJECT NO. 12872822	MAJOR TASK 2293 o SUBTASK
DATE JUN 27'87 FORM COMPLETED BY	CM2/00 2244

WATER QUALITY INSTRUMENTS

DATE	INSTRUMENT	SERIAL NO.	CALIBRATION PERFORMED (~)	TECHNICIAN
6/27	Onon 210 sh meter		/	D-Daven Dort C Maxiner
6/27	YSI S-C-T meter	12911	/	Davenport C. Maxeiner
				,
				·

WATER QUALITY READINGS

	MAT	EK .	MON				דעא	NGS		
DATE	TIME	TOTAL GALLONS REMOVED	TOTAL WELL VOLUMES REMOVED	TEMP. (OC)	DISSOLVED OXYGEN MG/L	Hd	REDOX (EH) MV	CONDUCTIVITY UMHOS/CM	APPEARANCE CCEAC V	COMMENTS
6/27				14.8		7.90		59x10'	CLEAR	
F 77	2030			14.8		7.98		GOKIÓ	\	
-									·	
				_						
				_						
						\square				
,		\dashv								
				\dashv		\longrightarrow		 		
<u> </u>							1			

"OTES:

- 1. COMMENTS SHOULD DELINEATE FINAL SAMPLE AND REPLICATE MEASUREMENTS.
- 2. ANY INSTRUMENTATION CALIBRATION OR USE ANOMALIES SHOULD BE NOTED.
- 3. APPEARANCE SHOULD BE NOTED BEFORE, DURING, AND AFTER DEVELOPMENT.

DATE	PUMP TYPE	SERIAL NO.	PUMP TECHNICIAN
6/17	pullemose		CM
6/27	wellaizano		com

					WA	TER	REMO	VAL	DA	TA	
DATE	PUMP ON	PUMP OFF	PUMPING RATE (GPM)	INCREMENTAL GALLONS REMOVED	TOTAL GALLONS REMOVED	INCREMENTAL WELL VOLUMES REMOVED	TOTAL WELL VOLUMES REMOVED	PUMP INTAKE LEVEL	WATER LEVEL BEFORE PUMPING	WATER LEVEL AFTER PUMPING	COMMENTS
6/27	1100	1500	150						11'	11'	PM
	1500	1900	25) 		11'	111	PM
1/27	,,,,,,,	,,,,,	.23								
											·
			.								
											••
				!							
		į								ļ	
										;	
										ļ	

WATER SAMPLING DATA

SERIAL NO.	WS.	00008
PAGE_OF_		

PROJECT NAME Morrison Ph	1 RE	SAMPLE LOCATION NO. GOOD OR BORING/WELL NO.		
raduct no. (Co) coo.	איוף. ענוון מאא	CR / ATT CHRTACK		
TECHNICAL CREW C. Maxeiner	1 D Daveni	PacT		
DATE JUN 27 '87	FORM COM	PLETED BY		
WEATHER SUNNY		LEVEL OF PROTECTION A B C (D) *		
MEASURING POINT Topol Riser	METHOD	of measurement <u>Ewi</u>		
MEASURING POINT ELEV	INIT	IAL WATER LEVEL ELEV.		
		INITIAL WATER LEVEL		
		5 150 TECHNICIAN 602		
•				
SAMPLING DEPTH INTERVAL	50	PUMPING RATE/SAMPLING 254 PM		
	 -			
WATER QUALITY INSTRUMENTS USED	SERIAL NO.	CALIBRATION REFERENCE		
	2210	 		
2. YSI S-C-T METER	12911	, , , , , , , , , , , , , , , , , , ,		
3. YSI Dissolved Oxygen meter	1	SEE YST S-C-T METER Calibration logbook 13 SEE YST D.O. METER Calibration logbook 13		
4.	1	The state of the s		
5.				
FINAL WATER QUALITY	.	DUDU CATE WATER CAMPING		
INSTRUMENT READING		DUPLICATE WATER SAMPLING DATA INSTRUMENT READINGS		
TEMP (°C)		TEMP (°C) /4		
CONDUCTIVITY (umhos/cm) 60 x		CONDUCTIVITY (umhos/cm) 60x10'		
PH 7.88		PH 7.89		
EH 165		EH 176		
D.O. (mg/1) 3.66		D.O. (mg/1) 3.69		
OTHER				
TECHNICIAN 00/cm TIME ST	ART <u>Zo:46</u>	rime finish 2055		
SAMPLE COLLECTION PERIOD: S	TART 2035	STOP 2055 TECHNICIAN CM2/DD		

*NOTE: FOR LEVELS OF PROTECTION; SEE SITE SPECIFIC SAFETY PLAN FOR DETAILS.

				SERIAL PAGE_C	NO. WS
FIELD FIL	JUME WATER COLLECTION TERED: YES	т	'IME 204	6 TECH. CM F	OF CONTAINERS 7 ILTER TYPE BARREL
				TAINERS	
QUANTITY	CONTAINER MATERIAL	SAMPL SERI	E LABEL AL NO.	PRESERVATIVES	COMMENTS
40 ML	GIASS	SL	000 13	_	VoA
<i>''</i>			14	-	R/OA
1/2 gm	11		<u> 15</u>		BNA
"	(1		16	.()-2	BNA
<u> </u>	PLASTIC		17	14N03	METALS-TOTAL METALS-DILL PREFILTRATION
loan	11,		18	(+N03	PIRTALS - DIII
		DO	CUMENT	ATION	
SAMPLE SH LAB ANALY	IPPING CONTAINE SIS REQUEST FOR CUSTODY FORM:	R SEAL M: YE	ed & pac s_no_	KED: YES_NO TIME <i>2300</i> SERI	ECHNICIAN TIME 13 @ TECH. CAL AL NO. 4/2 2729 TECH. CAL NO. 2729 TECH. CAL 2714

SAMPLE CONTROL SHEET

SERIAL	NO.	SCS_	00001	_
PAGE	OF _			

PROJECT NAME	DERISON PHIRI	DATE JUN 20187
PROJECT NO		SAMPLER _ C. MAXRINE!
SAMPLE LOCATION NO). <u>GIOID</u>	CUSTODIAN _ C. MAXEINER_

SAMPLE NO.	SAMPLE LABEL NO.	C.O.C. NO.	SHIPPED	LAB ANALYSIS REQUEST NO.
# (N VOAS	SL 00001	2995	JUN 22'87	2995-1
8	SLODOOZ			2995-1
AZ A	5600003			2995-2
В	SL00004			2995-2
#3 A	5L00005			2995-3
B	SUDDOOD			2995-3
H4A	SL00007	2995	JUN 22'87	2995-4
3	560008			2995-4
#SA	SL00009			2995-5
13	SLDDOID			2795-5
#6 A	SLOON			2995-6
3 V	5600012		V	2995-6
VOA	5L000 13	2729	JUN 29 87	LAR-2729
VoA	14			
BNA	15			
BNA	16			
METALS TOTAL	. 17			
METALS-DIST	18			
Prefiltration	19	Ψ	V	\bigvee
			-	

WELL DEVELOPMENT & PURGING GENERAL DATA

SERIAL NO. WDG
PAGE OF

00021

PROJECT NAME Morcison 24 1 R.I	BORING/WELL NO. 6-10	2D
PROJECT NAME Morrison the 1 R.T. PROJECT NO. 12872832	MAJOR TASK 2294 SU	BTASK
DATE JUN 23 '87 FORM COMPLETED BY	can (PP	
WELL CONSTRU		
TOTAL DEPTH (FT) 83.42'	BOREHOLE DIAMETER	2.4
GRAVEL PACK INTERVAL (FT) \$2.2 - 54'	WELL DIAMETER (ID)(II	N)
WELL PROTECTOR: YES NO	PADLOCK NO. N/A	
FLUID INJECTED DURING DRILLING (QUANTITY) AIR	
WATER VOLUME DATA	WATER VOLU	
DATE OF MEASUREMENT JUN 28 87	ITEM	VOLUME
		FT ³ GALS
MEASURING POINT Top of Riser		1.65
WATER LEVEL INSTRUMENT USED EWI		14.666
INTIAL WATER LEVEL (FT) 73' 4 1/4"	DRILLING FLUIDS	
LINEAR FEET OF WATER		8.33
LINEAR FEET SATURATED GRAVEL PACK _/O./	_	8.33
NOTE: QUANTITIES CALCULATED PRIOR TO DE	VELOPMENT	
DEVELOPMENT C	RITERIA	
T [1]		
METHOD OF DEVELOPMENT Teflon Bailer		
WATER QUALITY MEASUREMENTS: YES VO	-	
WATER VOLUME TO BE REMOVED (GALS) 8.5	MINIMUM /2.3 MUNIMIM	UM <u> </u>
NOTE: DEVELOPMENT TO BE PERFORMED IN AC	CORDANCE WITH PROJECT	r SPECIFIC
WELL DEVELOPMENT PLAN.	CORDANCE WITH I ROOLE	I SILCIIIC
WEDE DEVELOTIENT TENT.		
COMMENTS		
		
		

WATER SAMPLING DATA

SERIAL NO.	WS_	00021
PAGE_OF_		

PROJECT NAME Morrison ph	SAMPLE LOCATION NO. CIOLD OR BORING/WELL NO. MAJOR TASK 229 # SUBTASK
PROJECT NO. 12812832	MAJOR TASK 229 4 SUBTASK
TECHNICAL CREW C Maxiner	DDavenporT
DATE JUN 28 87 7	DDawenport FORM COMPLETED BY
WEATHER SUNNT	LEVEL OF PROTECTION A B C D *
MEASURING POINT Top of Ri	ser method of measurement Ewi
MEASURING POINT ELEV	INITIAL WATER LEVEL ELEV
sampling method <u>TeHon</u>	Dailer INITIAL WATER LEVEL 73'4'4"
TIME ELAPSED/FINAL DEVELOPM	ENT/PURGING 12 HOUSE TECHNICIAN CM
•	p or 1/20-73' pumping rate/sampling
WATER QUALITY INSTRUMENTS USED	SERIAL NO. CALIBRATION REFERENCE
1. Orion ph meter	2210 See Orion 210 ph meter Calibration lagbook 14
2. YSI S-C-T meter	12911 See YST S-C-T meter Calibration labouk 13
3. YSI Dissolved oxygen meter	2992 See YSI D. O. Meter Calibration laybook, 5
4.	
5.	

FINAL WATER QUALITY INSTRUMENT READINGS

DUPLICATE WATER SAMPLING DATA INSTRUMENT READINGS

TEMP (°C) 13.7 CONDUCTIVITY (umhos/cm) 74x10!	
PH	PH7.23
EH	EH
D.O. (mg/1)5.59 OTHER	D.O. (mg/1)5.83
TECHNICIAN COV TIME START 2030	TIME FINISH 2/55

SAMPLE COLLECTION PERIOD: START 2030 STOP 2155 TECHNICIAN CH2/DU

*NOTE: FOR LEVELS OF PROTECTION; SEE SITE SPECIFIC SAFETY PLAN FOR DETAILS.

					SERIAL PAGE_0	NO. WS
OTAL VOL	UME WATER COLL	ECTED		TO	TAL NO.	OF CONTAINERS 7
	TERED: YES∠N DOLED DURING C					
			LE CON			
UANTITY	CONTAINER MATERIAL	SAMPLI SERI	Z LABEL AL NO.	PRESER	VATIVES	COMMENTS
40ML	Elms	SLOO	00 63	()	-	VOA
40ML			64			VOA
inam			65			BNA
126M	<u> </u>		46			BNA
16	PLASTIL		67	HNE	13	TOT METALS
14	1		68	HN) (3)	DISS METALS
iem		A	69.	108		PREFILTERTION
			я			
			· · · · · · · · · · · · · · · · · · ·			•
		 				
		 				
		ļ				
				1		
		DOC	UMENT	ATION		
AMPLE SHI AB ANALYS	TAINERS SEALED PPING CONTAINS SIS REQUEST FOR CUSTODY FORM:	ER SEALE	D & PAC	KED:	YES_NO	TIME OLO TECH. AL NO. 2911 TECH. CW L NO. 2911 TECH. CW
OMMENTS:_						
			- i			
		- 				
			 			

WELL DEVELOPMENT.& PURGING WATER QUALITY/WATER REMOVAL

			00071
SERIAL	NO.	WD	
PAGE	OF		_

PROJECT NAME Morr. SON ph 1 R.T.	BORING/WELL NO. 6102D
PROJECT NO. 12872832	MAJOR TASK 2294 SUBTASK
DATE JUN 28 87 FORM COMPLETED BY	(m2/DD

WATER QUALITY INSTRUMENTS

DATE	INSTRUMENT	SERIAL NO.	CALIBRATION PERFORMED (~)	TECHNICIAN
6/28	Orion 210 ph meter	2210		C Maxeiner
6/28	YSI S-C-T Merer	12911		C Maxeiner
6/29	Orion 210 ph meter	2210		C. Maxeiner
6/29	YSI S-C-T meter	12911	V	C Maxeiner
6/30	Orion : 10 sh meter	2210	/	D Davenport
6/30	YSI S-C-T meter	12911	. V	D Davenport

DATE	TIME	TOTAL GALLONS REMOVED	TOTAL WELL VOLUMES REMOVED	TEMP. (OC)	DISSOLVED OXYGEN MG/L	нd	REDOX (EH) MV	CONDUCTIVITY UMHOS/CM	APPEARANCE	COMMENTS
	1314	8.≤	1 :	14.1	l .	7.07		76×10°	MUDDY	
6/29	1930	6		13,0		7.1Z		72×10	Cloudy - light Tan	
4/30	20:15	9		13.0		7.20		74×10	Cloudy - light Tan.	
,										
							<u>.</u>			
				\dashv						
				_						
									4	
				_						

NOTES:

- 1. COMMENTS SHOULD DELINEATE FINAL SAMPLE AND REPLICATE MEASUREMENTS.
- 2. ANY INSTRUMENTATION CALIBRATION OR USE ANOMALIES SHOULD BE NOTED.
- 3. APPEARANCE SHOULD BE NOTED BEFORE, DURING, AND AFTER DEVELOPMENT.

DATE	PUMP TYPE	SERIAL NO.	PUMP TECHNICIAN
			·
	l		

						WA	TER	REMO'	VAL	DA	TA	
DA	TE	PUMP ON	PUMP OFF	FUMPING RATE (GPM)	INCREMENTAL GALLONS REMOVED	TOTAL GALLONS REMOVED	INCREMENTAL WELL VOLUMES REMOVED	TOTAL WELL VOLUMES REMOVED	PUMP INTAKE LEVEL	WATER LEVEL BEFORE PUMPING	WATER LEVEL AFTER PUMPING	COMMENTS
												NA
												·
		,										

SAMPLE CONTROL SHEET

SERIAL	NO.	SCS_	00011
PAGE	OF _		

PROJECT NAME Morrison PHIRI	DATE
PROJECT NO	SAMPLER
SAMPLE LOCATION NO. FIELD	CUSTODIAN

SAMPLE NO.	SAMPLE	LABEL NO.	C.0.	.C. NO	SHIE	PED	LAB ANALYS	IS).
VOA	SLO	00 63	2499	13000	Jul 3	'87	LAR 2999	
VOA		64		1				
BNA		65						
BNA		66		L				
Tor Marms		67						
DI METAL		. 68				/	1	
DI METAL	<u>~</u>	69	<u> </u>				L	
				-				
								
								<u> </u>
					-			
							-	
								
								
					~			

WATER SAMPLING DATA

SERIAL NO.	ws _	0004	-0
PAGE_OF_			

* 		L	. <u></u>
PROJECT NAME Morrison ph 1 PROJECT NO. 12872832	R,I,	SAMPLE OR BOR	LOCATION NO. G1041)
PROJECT NO. 12872832	MAJOR TAS	K 2293	2294 SUBTASK
TECHNICAL CREW C. Maxeiner	D. Davenport		
TECHNICAL CREW C. Maxemer / DATE JUN 21 87	FORM COMP	LETED B	Y CM/DD
WEATHER SUNNY (OL	15K)	LEVEL O	F PROTECTION A B C D *
MEASURING POINT Top of Rise			
MEASURING POINT ELEV			
SAMPLING METHOD	ailer	INITIAI	L WATER LEVEL
TIME ELAPSED/FINAL DEVELOPME	NT/PURGING_	30	~ · ~ TECHNICIAN _ CU
SAMPLING DEPTH INTERVAL	y (1 well	PUMPING	G RATE/SAMPLING
			
WATER QUALITY INSTRUMENTS USED	SERIAL NO.	CAI	IBRATION REFERENCE
1. Orion 210 ph meter	2210	see-Orion	210 sh meter Calibration logbook
2. TYSI S-C-I meter			S-C-T METER Calibration logbook
· ·		l .	D.O. Meter Calibration legbook
	2110	256 - 12T	U.O. METEL CALITAR THE GOOK
3. YSI Dissolved Oxygen meter 14.	1		· •

			-	R QUAL	
	INS	TRUM	ENT	READIN	1GS
тғмр	(°C)	1	13.8		

DUPLICATE WATER SAMPLING DATA INSTRUMENT READINGS

TEMP (°C) 13.2

CONDUCTIVITY (umhos/cm) 72x10'

PH 7.11

EH 224

D.O. (mg/1) 7.79

rechnician <u>CP</u> time start 1945 time finish 1955

SAMPLE COLLECTION PERIOD: START 1945 STOP 1955 TECHNICIAN _____

*NOTE: FOR LEVELS OF PROTECTION; SEE SITE SPECIFIC SAFETY PLAN FOR DETAILS.

	-		SERIAL PAGE_C	NO. WS	
FIELD FIL	TERED: YES_N	ECTEDOTIMEV_195 OLLECTION PERIO	TECH. CM FI	OF CONTAINERS 7 [LTER TYPE BAV/K	- (
		SAMPLE CON	ITAINERS		•
QUANTITY	CONTAINER MATERIAL	SAMPLE LABEL SERIAL NO.	PRESERVATIVES	COMMENTS	
40_ML	G-1A35	56000 27	-	UUA	
4. Mc	•,	1 28		VOA	
YZGAL	11	29		BNA	}
1/2 GAL	le	30		BNA	
12.	PLANTIC	31	HN03	Merals-TUTAL	
lu.		32	HN03	METALS - DISI	
		DOCUMENT	ATION		
SAMPLE SHI	IPPING CONTAINS	ER SEALED & PAC RM: YES_∕NO_	KED: YES <u></u> NO_ TIME <u>l300</u> SERIA	ECHNICIAN TECHCEL TIME 160 TECHCEL AL NO. CAR ZUMECH. CEL L NO. 2715 TECH. CAR 1736	
COMMENTS:					
					(

WELL DEVELOPMENT. & PURGING WATER QUALITY/WATER REMOVAL

SERIAL	NO.	WD	00010
PAGE	OF		_

PROJECT NAME Morrison DA 1 R.T. PROJECT NO. 12872832	BORING/WELL NO. 6 1040 MAJOR TASK 3293 2294 SUBTASK
DATE SUN 21 '81 FORM COMPLETED BY	C47/00

WATER QUALITY INSTRUMENTS

DATE	INSTRUMENT	SERIAL NO.	CALIBRATION PERFORMED (~)	TECHNICIAN
6/27	Orion 210 ph meter			C. Maxeiner
6/27	YSI S-C-T METER	12911		C. Maxeiner
ļ				
1	•		·	

WATER QUALITY READINGS

	*****	T-1	QUA	717	11	NI A	201	NGS		
DATE	TIME	TOTAL GALLONS REMOVED	TOTAL WELL VOLUMES REMOVED	TEMP. (OC)	DISSOLVED OXYGEN MG/L	Hd	REDOX (EH) MV	CONDUCTIVITY UMHOS/CM	APPEARANCE	COMMENTS
6/27	1658	25		138		7.07		7210	Clear	
6/27	1800	85		134		7.11		7220		TELFON
6/27	1830	90		13 Z		7.13		72×10		TEIFON TEFON
	1940	110								
				_					·	
						Ш			······	
ļI										
				_						
				_		\vdash				
 						\vdash				
		∤		_		\vdash				
		 		\dashv						
 							\dashv			
 						\vdash				
	1	l	l					i		<u> </u>

`'OTES:

- 1. COMMENTS SHOULD DELINEATE FINAL SAMPLE AND REPLICATE MEASUREMENTS.
- 2. ANY INSTRUMENTATION CALIBRATION OR USE ANOMALIES SHOULD BE NOTED.
- 3. APPEARANCE SHOULD BE NOTED BEFORE, DURING, AND AFTER DEVELOPMENT.

DATE	PUMP TYPE	SERIAL NO.	PUMP TECHNICIAN
6/27	CONTRACTOR		CM-
	()		

					WA	TER	REMO'	VAL	DA	TA	
DATE	PUMP ON	PUMP OFF	PUMPING RATE (GPM)	INCREMENTAL GALLONS REMOVED	TOTAL GALLONS REMOVED	INCREMENTAL WELL VOLUMES REMOVED	TOTAL WELL VOLUMES REMOVED	PUMP INTAKE LEVEL	WATER LEVEL BEFORE PUMPING	WATER LEVEL AFTER PUMPING	COMMENTS
6/27	1650	1658	11.3				-		9'	9'	

WELL DEVELOPMENT & PURGING GENERAL DATA

SERIAL NO. WDG 00010

PROJECT NAME Morr. SON ph 1 RI	BORING/WELL NO	61040
PROJECT NO. 1287 2832	MAJOR TASK 2294	SUBTASK
DATE JUN 27'37 FORM COMPLETED BY	CH2/PD	
WELL CONSTRU	JCTION	
TOTAL DEPTH (FT) 51.13	BOREHOLE DIAMETER	6 "
GRAVEL PACK INTERVAL (FT)	WELL DIAMETER (ID)(IN)_2"
WELL PROTECTOR: YES NO	PADLOCK NO. N/A	
FLUID INJECTED DURING DRILLING (QUANTITY		
WATER VOLUME DATA	WATER V	OLUMES
DATE OF MEASUREMENT JUN 27 87	ITEM	VOLUME FT ³ GALS
MEASURING POINT Top of Riser		
WATER LEVEL INSTRUMENT USED EWI	GRAVEL PACK	30,/2
INTIAL WATER LEVEL (FT) 9'1"	DRILLING FLUX	
LINEAR FEET OF WATER 40'		
LINEAR FEET SATURATED GRAVEL PACK		36.57
NOTE: QUANTITIES CALCULATED PRIOR TO DE	EVELOPMENT	
DEVELOPMENT C	RITERIA	
WATER QUALITY MEASUREMENTS: YES NO WATER VOLUME TO BE REMOVED (GALS) 36.5 NOTE: DEVELOPMENT TO BE PERFORMED IN ACTUAL DEVELOPMENT PLAN.		
	<u> </u>	
		
	<u> </u>	
	 	
		

SAMPLE CONTROL SHEET

SERIAL NO. SCS 00002
PAGE __OF __

PROJECT NAME Morrison PH, RI	DATE J422'87
PROJECT NO. /2872832	
	CUSTODIAN Cur_

	ATTON NO)31001AN	
SAMPLE NO.	SAMPLE LABEL NO.	C.O.C. NO:	SHIPPED	LAB ANALYSIS REQUEST NO.
VOA	54000 20	2665	JUN 29 '87	GAR 2665
VOA	21			
BNA	22			
BNA	23			
METALS-TOTAL	24	 		
METALS-DISS	25			
DIEFILTIATION	- X 26	V	Ur	V
	7000			

WELL DEVELOPMENT. & PURGING WATER QUALITY/WATER REMOVAL

SERIAL	NO.	WD	00009
PAGE	OF		_

PROJECT NAME MOSSING Ph 1 RI PROJECT NO. 1287 2832 DATE JUN 20 '87 FORM COURSE TO THE TOTAL PROJECT NO. 6/045 MAJOR TASK 2292 SUBTASK —			
PROJECT NO. 1287 2832 MAJOR TASK 2292 SUBTASK	PROJECT NAME MCCC	BORING/WELL NO	61045
MAJOR TASK 20 187 20 187 2244 SUBTASK	PROTECTION NO 1300 Ph 1 RI	TOP WACK 2297	CHIPTACK -
10 81 -	PROJECT NO: 1287 2832	MAJOR TASK 2794	SUBTROK
DATE JON COURT PROP BY	DATE JUN 20 '87 FORM COMPLETED BY	Con / 11	

WATER QUALITY INSTRUMENTS

DATE	INSTRUMENT	SERIAL NO.		TECHNICIAN
6/20	OriON Dh METER	22.0	/	D Davenport
6/20	YSI S-C-T meter	12911		1) Davenport
-				

WATER QUALITY READINGS

		·	7		11	RE	נעא	NGS		
DATE		OTAL ALLONS REMOVEL	TOTAL WELL VOLUMES REMOVED	(O _C)	DISSOLVED OXYGEN MG/L	рН	REDOX (EH) MV	CONDUCTIVITY UMHOS/CM	APPEARANCE	COMMENTS
6/20	1550	80	<u> </u>	12.3		7.02		80×10'	ver c	very Silty
6/20	1612	90		13 1		7.03		82×101	<u> </u>	very silty
6/20	1629	100		13.1		6.99		3220	4	1,,
 										
-										
				_						
				4		Ш	_			
				_			_			
				_		\dashv	\dashv			
						\square	_			
				-						
					-	\dashv				
 		‡		\dashv						
				\dashv		-		\dashv		
		1	i				1	1		

OTES:

- 1. COMMENTS SHOULD DELINEATE FINAL SAMPLE AND REPLICATE MEASUREMENTS.
- 2. ANY INSTRUMENTATION CALIBRATION OR USE ANOMALIES SHOULD BE NOTED.
- 3. APPEARANCE SHOULD BE NOTED BEFORE, DURING, AND AFTER DEVELOPMENT.

DATE	PUMP TYPE	SERIAL NO.	PUMP TECHNICIAN
6/20	CONTINUTERS	_	Crz
'	P. 7		
1			
			,

DATE DATE					WA	TER	REMO	VAL	DA'	TA	<u>-</u>
4/20 1500 1515 15ggm	DATE	1	l	INCREMENTAL GALLONS REMOVED	TOTAL GALLONS REMOVED	REMENTA L VOLUM SVED	TOTAL WELL VOLUMES REMOVED	l u	WATER LEVEL BEFORE PUMPING	TER LEVEL TER PUMPI	COMMENTS
	420	1500	1515						۷'	6'	6 5.

WELL DEVELOPMENT & PURGING GENERAL DATA

SERIAL NO. WDG 00009 PAGE OF

PROJECT NAME Morrison Ph 1 RI PROJECT NO. 12872832 DATE JUN 20'37 FORM COMPLETED BY	MAJOR TASK 2294 SUBTASK —					
WELL CONSTRU	UCTION					
TOTAL DEPTH (FT)	BOREHOLE DIAMETER 6 WELL DIAMETER (ID)(IN PADLOCK NO. N/A Y) A/R	3" v)_z"				
WATER VOLUME DATA	WATER VOLU					
DATE OF MEASUREMENT SON 70 '87	ITEM	VOLUME FT ³ GALS				
MEASURING POINT Top of Riser WATER LEVEL INSTRUMENT USED $E\omega L$	<u> </u>	(1.3)				
INTIAL WATER LEVEL (FT) 9'/0"		27.54				
LINEAR FEET OF WATER ~ 8.0' LINEAR FEET SATURATED GRAVEL PACK		<i>b</i> <i>b</i>				
NOTE: QUANTITIES CALCULATED PRIOR TO DE	EVELOPMENT					
DEVELOPMENT O	CRITERIA					
WATER VOLUME TO BE REMOVED (GALS) 29 (Vol 37) NOTE: DEVELOPMENT TO BE PERFORMED IN ACCOUNT PLAN.						
COMMENTS						
		·				
	•					
						

SAMPLE CONTROL SHEET

			0000
SERIAL	NO.	SCS_	00003
PAGE	OF _		

PROJECT NAME Marrison Pet , 21	DATE
	SAMPLER
SAMPLE LOCATION NO. G1640	CUSTODIAN Cur

SAMPLE NO.	SAMPLE	LABEL NO.	C.O.C. NO.	SHIPPED	LAB ANALYSIS REQUEST NO.
VOA	51,	200 27	2735	J4N 29-87	£AR 2755
VOA		28	1		
BNA	7	29			
BNA		30			
Mams-Torn		31			
METACS-DIJS		32			
METALS-DISS PLEFILLATION	V	33	V	V	
	— 				
				_	
				· · · · · · · · · · · · · · · · · · ·	
					
	-				
					
	 				
					

WELL DEVELOPMENT & PURGING GENERAL DATA

SERIAL NO. WDG
PAGE OF 00019

PROJECT NAME MORCISON DH L RI	BORING/WELL NO. 6	2201
PROJECT NO. 1287283Z	MAJOR TASK 2294 SU	JBTASK
DATE JUN 28 '87 FORM COMPLETED BY	C012/0P	
	· · · · · · · · · · · · · · · · · · ·	
WELL CONSTRU		
TOTAL DEPTH (FT) 23.7 24.9'	BOREHOLE DIAMETER	10"
GRAVEL PACK INTERVAL (FT) 23.0-7.0'	WELL DIAMETER (ID)(I	N)Z''
WELL PROTECTOR: YESNO	PADLOCK NO. N/A	
FLUID INJECTED DURING DRILLING (QUANTITY		
WATER VOLUME DATA	WATER VOLU	MES
	TTEM	VOLUME
DATE OF MEASUREMENT JUN 22'67		FT ³ GALS
MEASURING POINT 702		1.8
WATER LEVEL INSTRUMENT USED Ews		, , , , ,
INTIAL WATER LEVEL (FT) /2'// 3/4 LINEAR FEET OF WATER //	DRILLING FLUIDS	100
		10/ 20.7
LINEAR FEET SATURATED GRAVEL PACK _///	_	
NOTE: QUANTITIES CALCULATED PRIOR TO DE	EVELOPMENT	
DEVELOPMENT C	RITERIA	
METHOD OF DEVELOPMENT Teflon Bailer		
WATER QUALITY MEASUREMENTS: YES NO		
WATER VOLUME TO BE REMOVED (GALS) 20.7		тм 62./
WATER VOLUME TO BE REMOVED (GAES)	MINIMOM <u>21.00</u> MAXIM	10H <u>- 7 </u>
NOTE: DEVELOPMENT TO BE PERFORMED IN AC	CORDANCE WITH PROJEC	T SPECIFIC
WELL DEVELOPMENT PLAN.		
COMMENTS		
		

WELL DEVELOPMENT & PURGING WATER QUALITY/WATER REMOVAL

SERIAL	NO.	WD	0001-9
PAGE	OF		- 00013

PROJECT NAME Morrison on 1 27	BORING/WELL NO	G-1053
PROJECT NO. 1287 2832	MAJOR TASK 2294	SUBTASK
DATE JUNE ST FORM COMPLETED BY	Cms (00.	

WATER QUALITY INSTRUMENTS

DATE	INSTRUMENT	SERIAL NO.	CALIBRATION PERFORMED (~)	TECHNICIAN	
6/28-30/87	Orion 210 ph meter	0125	/	cr-	
6/28-30/27	YSI S-C-T meter	12911		cor	-
	VSI DESCRIPTION TO THE PARTY	299 2 ^{PD}			
		L			
				· · · · · · · · · · · · · · · · · · ·	

WATER OUALITY READINGS

	WAI	<u> </u>	VOV	111		KIL.	י ע	NGS		
DATE	TIME	TOTAL GALLONS REMOVED	1	TEMP. (OC)	DISSOLVED OXYGEN MG/L	рН	REDOX (EH) MV	CONDUCTIVITY UMHOS/CM	APPEARANCE	COMMENTS
6/28	1630	5							5,177	Pry
6/29	1500	5		49	<u> </u>	696		Baris 1	V	/
6/30	2349			B.8	<u></u>	2.07		MSXN	V	
										
				\neg						
	··									

`OTES:

- 1. COMMENTS SHOULD DELINEATE FINAL SAMPLE AND REPLICATE MEASUREMENTS.
- 2. ANY INSTRUMENTATION CALIBRATION OR USE ANOMALIES SHOULD BE NOTED.
- 3. APPEARANCE SHOULD BE NOTED BEFORE, DURING, AND AFTER DEVELOPMENT.

DATE	PUMP TYPE	SERIAL NO.	PUMP TECHNICIAN
İ			

	,-	•	-,-		WA	TER	REMO	VAL	DA	TA	
DATE	PUMP ON	PUMP OFF	PUMPING RATE (GPM)	INCREMENTAL GALLONS REMOVED	TOTAL GALLONS REMOVED	INCREMENTAL WELL VOLUMES REMOVED	TOTAL WELL VOLUMES REMOVED	PUMP INTAKE LEVEL	WATER LEVEL BEFORE PUMPING	WATER LEVEL AFTER PUMPING	COMMENTS
											N/A
					<u> </u> 						·
		:									·
		;									
				,							·
					,						
				:							

GEOLOGIC DRILLING COMMENTS

BORING NO. G105S JMA PROJECT NO. 12872832 DATE 6-22-87

REMARK NO.	REMARKS
1	Encountered had @ 11.0'
2	Driller indicating blowin on top of bit
3	Pulled rods out @ 20', hole collapsed to 8.0' started new hole 3.0' N
4	In new hole G105S installed 22' of 8" casing to hold hole open. Continued to advance hole
5	@ 53.0' still in silty sand (no rock) decision to install well: backfill to 23.0'. Pulled rods; hole collapsed to 23.0'

	WATER LEVELS								
REFERENCE POINT	DATE	TIME	DEPTH (FT.)	COMMENTS	TECH.				
Ground Surface	6-22-87	0840	11.0	During Drilling	СМ				
		ļ							

WATER SAMPLING DATA

SERIAL NO.	WS	<u>.</u>	0001	9
PAGEOF				

PROJECT NAME Mocroson ph 3	ZI	SAMPLE LOC	WELL NO GOSS
PROJECT NO. 128/2832	MAJOR TA	SK _ 7 22 44	SUBTASK
TECHNICAL CREW C Maxemen /	` \ _		
DATE JUN '87	FORM COM	PLETED BY	CO12/00
WEATHER SUNNY		LEVEL OF P	ROTECTION A B C D *
MEASURING POINT TOR	METHOD	OF MEASUREME	ent <u>Ew</u>
MEASURING POINT ELEV.	INIT	IAL WATER LE	EVEL ELEV.
	<u>:</u>		
SAMPLING METHOD TEFLON B	ailer	INITIAL WA	TER LEVEL /3//2"
SPECIAL SAMPLING METHODS	√		
	ENG / DUDCING	16 H-3.	MPCHNYCYNN A
TIME ELAPSED/FINAL DEVELOPM			
SAMPLING DEPTH INTERVAL	TOTAL	PUMPING RA	TE/SAMPLING
WATER QUALITY INSTRUMENTS USED	SERIAL NO.	CALIBR	ATION REFERENCE
1. Or. ON Dh WITET	2210	see Orion 210	sh meter Calibration logbook
2. YSI S-C-T meter	12911	sce & YSI S-C-	T METER Calibration legbook meter Calibration legbook meter Calibration legbook
3. YSI Dissolved Oxygen meter	2992	see YSI D.O	. meter Calibration logbook
4.			· · · · · · · · · · · · · · · · · · ·
5.			
FINAL WATER QUALIT			E WATER SAMPLING TRUMENT READINGS
TEMP (°C)			
CONDUCTIVITY (umhos/cm)_/63	i i		(umhos/cm)
PH6.27	1		(((((((((((((((((((
EH 208			
D.O. (mg/l) 4.45			
OTHER		-	
TECHNICIAN CW TIME S	•		
IDEMITETAL STATE S	IAKI /	TIME LIMISH	
			· -
SAMPLE COLLECTION PERIOD:	START 1510	STOP 1620	TECHNICIAN $\frac{Cm^2/D}{D}$

*NOTE: FOR LEVELS OF PROTECTION; SEE SITE SPECIFIC SAFETY PLAN FOR DETAILS.

,			SERIAL PAGE_C	NO. WS
FIELD FILT	rered: yes <u>v</u> n		TECH. CFT F	OF CONTAINERS_7 ILTER TYPE_BARRCI
		SAMPLE CONT	TAINERS	
QUANTITY	CONTAINER MATERIAL	SAMPLE LABEL SERIAL NO.	PRESERVATIVES	COMMENTS
Aonzoe	GlACS	SL000 54	108	VOA
40ML		55		VOA
126AL		56		BNA
1/2 GAL	<u> </u>	57	V	BNA
. 14	PLASTIC	58	H N03	TOT MCTALS
16		59	HN03	DISS METALS
IGAL		60	(CE	PZ EFI I TVATION
SAMPLE SHI LAB ANALYS			IMET	ECHNICIAN 7/2/6? TIME 0100 TECH. 2012 AL NO! A 273 TECH. 2773 L NO. 2731 TECH. (1/12)
COMMENTS:				

SAMPLE CONTROL SHEET

SERIAL NO. SCS_00009_ PAGE__OF___

PROJECT NAME	Morrison pit 125	DATE	5ul \$ 87
PROJECT NO.	12872832	SAMPLER	COIT
SAMPLE LOCATION	NO. 6-1055	CUSTODIAN	Cu

SAMPLE NO.	SAMPLE LAB	EL NO.	C.O.C. NO.	SHIPPED	LAB ANALYSIS REQUEST NO.
VoA	5000	54	2731	JUL 2 87	LAR 2731
JOA		55			
BNA		56			
BNA		57			
TOT METAL		58			
US METAL	/_	59			·
PREFILIVATION	, V	60			. 4
	· · · · · · · · · · · · · · · · · · ·				
	,				
		,			

WELL DEVELOPMENT & PURGING GENERAL DATA

SERIAL NO. WDG 00031 PAGE OF

PROJECT NAME Morrison ph 1 RI PROJECT NO. 1287 2837 DATE JUN 28 87 FORM COMPLETED BY	BORI MAJO	NG/WELL NO. GRANGE TASK 22322945U	IOSD IBTASK	
WELL CONSTRU				
TOTAL DEPTH (FT)	PADL	ock no. N/A	6" N) Z	,,
WATER VOLUME DATA		WATER VOLU	MES	
DATE OF MEASUREMENT SON 28 '81 MEASURING POINT TOP OF Riser		TORM	l voi	GALS
WATER LEVEL INSTRUMENT USED EWI		GRAVEL PACK		1.65
INTIAL WATER LEVEL (FT) ZZ' 7/4"		DRILLING FLUIDS	 	(105
LINEAR FEET OF WATER 27.7' LINEAR FEET SATURATED GRAVEL PACK		1	V01	12.17
NOTE: QUANTITIES CALCULATED PRIOR TO DE	EVELO	PMENT		
DEVELOPMENT C	RITER	RIA		
WATER QUALITY MEASUREMENTS: YES NO WATER VOLUME TO BE REMOVED (GALS) 12.17. NOTE: DEVELOPMENT TO BE PERFORMED IN AC WELL DEVELOPMENT PLAN.	MINI	·		
COMMENTS				

WELL DEVELOPMENT, & PURGING WATER QUALITY/WATER REMOVAL

SERIAL	NO.	WD	00031
PAGE			

PROJECT NAME MORRISON Dh 1 RI	BORING/WELL NO GIUSD
PROJECT NO. 12877832	MAJOR TASK 7843 LUH SUBTASK
DATE TON 28 87 FORM COMPLETED BY	CH2/OD 00

WATER QUALITY INSTRUMENTS

DATE	INSTRUMENT	SERIAL NO.	CALIBRATION PERFORMED (~)	TECHNICIAN
6/28	CTION 210 ph meter	2210	V	C Maxeiner
6/28	YSI S.C.T MITER	12911	/	C Maxeiner
<u> </u>				
		·		

WATER OUALITY READINGS

	WAL	711	VOL	111			נעה	NGS		
DATE	TIME	TOTAL GALLONS REMOVED	1	TEMP. (OC)	DISSOLVED OXYGEN MG/L	Hd	REDOX (EH) MV	CONDUCTIVITY UMHOS/CM	APPEARANCE	COMMENTS
6/28		36		18.2		7.12		79x10		Clearing after 30 gallous
6/28	1830	41		182		7.14		7 <i>8:</i> 40	CLEAR	, , , , , , , , , , , , , , , , , , , ,
				\neg						

OTES:

- 1. COMMENTS SHOULD DELINEATE FINAL SAMPLE AND REPLICATE MEASUREMENTS.
- 2. ANY INSTRUMENTATION CALIBRATION OR USE ANOMALIES SHOULD BE NOTED.
- 3. APPEARANCE SHOULD BE NOTED BEFORE, DURING, AND AFTER DEVELOPMENT.

DATE	PUMP TYPE	SERIAL NO.	PUMP TECHNICIAN
6/30	WELL WIZARD	_	cm
. ,	WELL WICKED		
	1		

WATER REMOVAL DATA

DATE DATE						WA	TER	REMO	VAL	DA	TA	
	DATE	i -	OF	1	INCREMENTAL GALLONS REMOVED	TOTAL GALLONS REMOVED	REMENTAL VOLUME SVED	TOTAL WELL VOLUMES REMOVED	PUMP INTAKE LEVEL	FER LEVEL	rer LEVEL rer PUMPI	COMMENTS
				.25								

SERIAL NO. WS ______00031_PAGE_OF__

PROJECT NO. 160/6036	MA.TOD ጥአር	SAMPLE LOCATION NO. GIOSD OR BORING/WELL NO. K 229-3 2294 SUBTASK
TECHNICAL CREW C. Maxages 1)	William MIT	K
DATE JUN 28 '97	FORM COMP	LETED BY
WEATHER SUNNY		LEVEL OF PROTECTION A B C 🛈 *
MEASURING POINT TOP of Kisci	RETHOD O	f measurementEWI
MEASURING POINT ELEV	INITI	AL WATER LEVEL ELEV.
SPECIAL SAMPLING METHODS	<u> </u>	INITIAL WATER LEVEL _72'7'4"
TIME ELAPSED/FINAL DEVELOPME	NT/PURGING_	5 MIN TECHNICIAN CM?
SAMPLING DEFTH INTERVAL	35'	PUMPING RATE/SAMPLING 25 g FM
WATER QUALITY INSTRUMENTS USED		CALIBRATION REFERENCE
1-Orion 210 ph meter	2210	see Orion 210 ph meter Calibration logbook
2.YSI S-C-I meter	12911	SER VSI S-C-T METER Calibration logbook 1
3. YSI Dissolved meter	1	see YSI Dio meter Calibration logbook
4.		
5.		
FINAL WATER QUALITY	······································	DUPLICATE WATER SAMPLING

FINAL WATER QUALITY INSTRUMENT READINGS	DUPLICATE WATER SAMPLING DATA INSTRUMENT READINGS
TEMP (°C) 18.2 CONDUCTIVITY (umhos/cm) 77 x 101	TEMP (°C) 19.9 CONDUCTIVITY (umhos/cm) 80x10'
PH 7.13 EH 221 D.O. (mg/1) 4.33	PH 7.09 EH 217 D.O. (mg/1) 3.70
TECHNICIAN COT TIME START 1840	TIME FINISH 1915
SAMPLE COLLECTION PERIOD: START 1840	STOP 1915 CONTECHNICIAN CM

t				SERIAL PAGE_C	NO. WS	
FIELD FI	LUME WATER COLLE LTERED: YES NO COOLED DURING CO	TIME	<u>900-</u> тесн.	- CM2 F		
		SAMPLE C	ONTAINE	RS		
QUANTITY	CONTAINER MATERIAL	SAMPLE LAB	EL PRESEI	RVATIVES	COMMENTS	
40ML	GIASI	SL000 8	2	_	VOA	
gom		1 9			VOA	
12 CALL		 	6		BNA	
1/26AL		8	7		BNA	
. 16	PLASTIL	 		202	METALS- TOTA	<u>r</u>
16		 		NO3	METALS - DI	
IGAL		J 9	0 -		PREFILTRATIO	<u>cn</u>
		DOCUME	ENTATION			
SAMPLE SH	ONTAINERS SEALED HIPPING CONTAINE KSIS REQUEST FOR CUSTODY FORM:	R SEALED &	PACKED:	YES WO	TIME TEC	HCM2 H.CM2 H.CM
COMMENTS:						

WELL DEVELOPMENT & PURGING GENERAL DATA

SERIAL NO. WDG PAGE OF 00032

PROJECT NAME Morrison ph 1 RT PROJECT NO. 12872832 DATE SUN 28 37 FORM COMPLETED BY	BORING/WELL NO. 6105D DUP MAJOR TASK 2294 . SUBTASK					
DATE JUN 28 37 FORM COMPLETED BY	CH2/00					
WELL CONSTRU						
TOTAL DEPTH (FT) 50.4' GRAVEL PACK INTERVAL (FT) 46-32	BORE	HOLE DIAMETER	61	<u> </u>		
GRAVEL PACK INTERVAL (FT) 46-32	WELL	DIAMETER (ID)(II	N) Z'	<u>, </u>		
WELL PROTECTOR: YESNO	PADL	OCK NON/A				
FLUID INJECTED DURING DRILLING (QUANTITY	·)	<u> </u>				
WATER VOLUME DATA		WATER VOLU	MES			
DATE OF MEASUREMENT SUN 28 87		ITEM	VOL	UME GALS		
MEASURING POINT Top of Riser		WELL CASING				
WATER LEVEL INSTRUMENT USED EWI		GRAVEL PACK				
INTIAL WATER LEVEL (FT) 22' 14" LINEAR FEET OF WATER 27.7'		DRILLING FLUIDS				
LINEAR FEET SATURATED GRAVEL PACK / 4'				•		
NOTE: QUANTITIES CALCULATED PRIOR TO DE		 				
DEVELOPMENT C	RITER	RIA				
METHOD OF DEVELOPMENT Well Wizard WATER QUALITY MEASUREMENTS: YES V NO						
WATER VOLUME TO BE REMOVED (GALS) 12.2	- MININ	MIXAM <u>18.3</u> MUN	UM 36	.51		
NOTE: DEVELOPMENT TO BE PERFORMED IN AC						
WELL DEVELOPMENT PLAN.						
COMMENTS						
		·				
	·					
	· 					
						
						
			_			
		······································				
						
						
·			·			

WELL DEVELOPMENT, & PURGING WATER QUALITY/WATER REMOVAL

SERIAL	NO.	WD	_00032
PAGE	OF		_

PROJECT NAME Morrison oh 1 RT	BORING/WELL NO. GIOSD DUP
PROJECT NO. 12872832	MAJOR TASK 2294 » SUBTASK —
DATE JUN 28 '87 FORM COMPLETED BY	Cu2/00

WATER QUALITY INSTRUMENTS

DATE	INSTRUMENT	SERIAL NO.	CALIBRATION PERFORMED (~)	TECHNICIAN
6/28	Orion 210 ON NICTER		/	C Maxeinen
6/28	1SI S.C.T METER	12911	V	C Maxeiner
•				
		. :		
	·			

WATER OUALITY READINGS

		DI/	QUA	TIL	11	Nu	ו עה	NGS		
DATE	TIME	TOTAL GALLONS REMOVED	TOTAL WELL VOLUMES REMOVED	TEMP. (OC)	DISSOLVED OXYGEN DAG/L	Hd	REDOX (EH) MV	CONDUCTIVITY UMHOS/CM	APPEARANCE	COMMENTS
6/28	1824			182		7. IZ		79 x 10	Moddy to Cloudy	Clearing after 30 gallons
6/28	1330	41		13.z		7.14		18 x10	Muddy to Cloudy CLEAR	·
7										
		-					-		,	
				\dashv						
		$\neg \neg$		┪			\neg			
				_			\neg	-		
							\neg	$\overline{}$		
						\vdash	\dashv			
L			i			لـــا				L

NOTES:

- 1. COMMENTS SHOULD DELINEATE FINAL SAMPLE AND REPLICATE MEASUREMENTS.
- 2. ANY INSTRUMENTATION CALIBRATION OR USE ANOMALIES SHOULD BE NOTED.
- 3. APPEARANCE SHOULD BE NOTED BEFORE, DURING, AND AFTER DEVELOPMENT.

PUMPING TECHNIQUES

DATE	PUMP TYPE	SERIAL NO.	PUMP TECHNICIAN
6/30	WELL WIZARD	_	Cur
	;;		
1			

PUMP ON PUMP ON PUMP ON PUMP OFF GRALLONS REMOVED TOTAL WELL VOLUMES REMOVED TOTAL WELL VOLUMES REMOVED PUMP INTAKE LEVEL WATER LEVEL WATER LEVEL WATER LEVEL WATER LEVEL AFTER PUMPING AFTER PUMPING AFTER PUMPING AFTER PUMPING AFTER PUMPING AFTER PUMPING AFTER PUMPING AFTER PUMPING AFTER PUMPING AFTER PUMPING	
6/30 1630 1925 -25	

SERIAL NO.	WS_	00032
PAGEOF		· ·

PROJECT NAME Marrison ph 4		SAMPLE I	OCATION NO. GIODDUP				
PROJECT NAME Marriage Ph 4 RE SAMPLE LOCATION NO. 6100 Dup PROJECT NO. 1287 2832 MAJOR TASK 2298 SUBTASK							
TECHNICAL CREW Collarence / DATE JUN 28 187	D Davens	or T					
DATE JUN 28 '87	FORM COM	PLETED BY	Ch2/00				
WEATHER SUNM							
MEASURING POINT Top of Rise	METHOD	OF MEASURI	ement <u>Ewi</u>				
MEASURING POINT ELEV	INIT	IAL WATER	LEVEL ELEV.				
SAMPLING METHOD Well wize Special Sampling methods		<u> </u>					
TIME ELAPSED/FINAL DEVELOPME	NT/PURGING	·	SMIN TECHNICIAN CM?				
SAMPLING DEPTH INTERVAL	3s'	PUMPING	RATE/SAMPLING .25 9 PM				
WATER QUALITY INSTRUMENTS USED	SERIAL NO	. CALI	BRATION REFERENCE				
1. Orion 210 ph meter	2210	SE OTION 210 ph meter Calibration logbook !					
2. YST S-C-T METER	12911	see YSI S-C-T meter Calibration logbook					
3. YST Dissolved Oxygen meter	2992	sce YSI D	O, Moter Calibration laybook 1				
5.		 					
FINAL WATER QUALITY INSTRUMENT READINGS	, . S		ATE WATER SAMPLING NSTRUMENT READINGS				
TEMP (°C) 18.1	j	TEMP (°C)	18.3				
CONDUCTIVITY (umhos/cm) 77 x	· · · · · · · · · · · · · · · · · · ·		TY (umhos/cm) 78 ×10'				
PH7.14	4		7.15				
ЕН 717		EH					
D.O. (mg/1) 4,53 OTHER			1) 4.49				
TECHNICIAN CM TIME ST.		TIME FINIS	SH 1925				
SAMPLE COLLECTION PERIOD: S'			· ·				

			SERIAL PAGE_C	NO. WS
FIELD FIL	TERED: YES \(\sigma \text{N} \)	ected O time 1200 OLLECTION PERIOD	TECH. CIT F.	OF CONTAINERS 7 ILTER TYPE BALLEL
		SAMPLE CONT		
QUANTITY	CONTAINER MATERIAL	SAMPLE LABEL SERIAL NO.	RESERVATIVES	COMMENTS
YOML	CALASS	5600091		VOA
40ML		92		VOA
YA CAL		93		BNA
GGAL		94		RNA
11	PLASTIC	15	HN03	METALS-TOTAL
16AL		96	HNO:	METALS - DIS PREFILTVATION
		DOCUMENTA	TION	
SAMPLE SHI LAB ANALYS	IPPING CONTAINI SIS REQUEST FO	ER SEALED & PACK RM: YES_NO_ T	ED: YES <u>√</u> NO. 'IME <u>ol∞</u> SERI	ECHNICIAN TIME 0100 TECH. 010^2 AL NO. 1000 TECH. 1000 1000 TECH. 1000 1000 TECH. 1000 1000 1000 1000 TECH. 1000 100
COMMENTS:				
				
				

SAMPLE CONTROL SHEET

			~~~	
SERIAL	NO.	SCS_	00017	
PAGE				

PROJECT NAME MONRISON PHIRI	DATE JUNZO 87
PROJECT NO. 12617832	SAMPLERCr(2
SAMPLE LOCATION NO. GIOSD Y DUP	CUSTODIAN 2012

VOA SLOCO84 2734 JULY 2'87 LAR 2733  VOA 85  PONT 86  PONT 87  METALS-TOT 88  PVEFILLY ATLOR 90		411011 1101.	1	31001M	
VOP     85       POWH     86       POWH     87       METALS-TOT     88       METALS-DISV     89       PWEFILTWATION     90       VOA     200091       2734     54142'8       LAR 2732       VOIT     92       BNP     94       METALS-TOT     95       METALS-DIV     96	SAMPLE NO.	SAMPLE LABEL NO.	C.O.C. NO.	SHIPPED	LAB ANALYSIS REQUEST NO.
PNNA 85  PNA 87  METALS-TET 88  METALS-DISV  PVEFILLE ATLOR  VOA 200091 2734 July 2'80 LAR 2732  VOA 92  BNA 94  METALS-DISV  METALS-DISV  96	VOA	5100084	2734	July 2 87	LAR 2733
PANA 87  METALS-TOT 88  METALS-DISW PREFILTE ATTOM  90  VOA 200091 2734 JULY 2'80 CAR 2732  VOA 92  BNA 94  METALS-TOT 95  METALS-DISW  89  10  10  10  10  10  10  10  10  10  1	VOA	85			4
METALS-TOT 88  METALS-TOT 89  PREFILTE ATTOM  90  LOA 200091 2734 5472'80 CAR 2732  VOIT 92  BNIT 93  BNIT 94  METALS-TOT 95  METALS-DI) 96		86			
METALS-DISV  89  PREFILTER ATION  90  LOA 200091 2734 July 2'80 CAR 2732  VOIT  BNH  92  PROTUSTS  94  METALS-DISV  89  //  //  //  //  //  //  //  //  //	BNA				
Presiltration 90  VOA 200091 2734 5u1y2'80 CAR 2732  VOIT 92  BNA 94  METALS-DI) 96	METALS-TOT	· · · · · · · · · · · · · · · · · · ·			
VOA   200091   2734   JULY 2'80   LAR 2732   VOLT   92	METALS-DISV	89			
VOIT     92       BNH     93       BNH     94       METALS-TOT     95       METALS-DI)     96	Prefelt Ation	V 90	W	V	$\overline{}$
BNA 94  METALS-TOT 95  METALS-DI) 96	VOA	200091	2734	July 2'8	LAR 2733
BNA 94  METALS-TOT 95  METALS-DI) 96	Voit	92			/
METALS-DI) 96	BNA				/!
METALS-DI) 96	BNA				
		95			
Prefiltration 97	METALS-DI)	1 /			
	Presitration	_ V 97		V	
		·			
					•



# WELL DEVELOPMENT & PURGING GENERAL DATA

SERIAL NO. WDG 00011
PAGE OF

		<del> </del>
PROJECT NAME Morrison ph 1 R.T	BORING/WELL NO. 6	106 D
PROJECT NO. 12872832	MAJOR TASK 2294 SI	JBTASK
PROJECT NO. 12872832 DATE JUN 28'87 FORM COMPLETED BY	2244 50	- M2/00
WELL CONSTRU		
		- "
GRAVEL PACK INTERVAL (FT) 24.6  GRAVEL PACK INTERVAL (FT) 25.5-6.5'	BOREHOLE DIAMETER	6
GRAVEL PACK INTERVAL (FT) 25.5-6.5'	WELL DIAMETER (ID)(I	N)
WELL PROTECTOR: YES V NO	PADLOCK NO. N/A	
FLUID INJECTED DURING DRILLING (QUANTITY	Y) AIK	
WATER VOLUME DATA	WATER VOLU	MES
DATE OF MEASUREMENT JUN 78'87	ITEM	VOLUME
MEASURING POINT TOR.	WELL CASING	FT ³ GALS
WATER LEVEL INSTRUMENT USED EWI	GRAVEL PACK	2.48
INTIAL WATER LEVEL (FT) 9'5"		10.16
LINEAR FEET OF WATER		<u> </u>
LINEAR FEET SATURATED GRAVEL PACK	- 12.6 1 U	10/ 12.64
NOTE: QUANTITIES CALCULATED PRIOR TO D		,
DEVELOPMENT O	CRITERIA	
WATER VOLUME TO BE REMOVED (GALS) 12.6  NOTE: DEVELOPMENT TO BE PERFORMED IN AGE WELL DEVELOPMENT PLAN.  COMMENTS		
	<del></del>	
	<del></del>	



# WELL DEVELOPMENT: & PURGING WATER QUALITY/WATER REMOVAL

SERIAL	NO.	WD	00011
PAGE	OF		

6./0/ 0
BORING/WELL NO. 6/06D
MAJOR TASK 2294 SUBTASK
CM2/00

WATER QUALITY INSTRUMENTS

DATE	INSTRUMENT	SERIAL NO.	CALIBRATION PERFORMED (~)	TECHNICIAN
6/28	Orion 210 ph meter		V	C Maxeiner
6/28	YSI S-C-T meter	12911		C Maxeiner
			·	
	• •			

WATER QUALITY READINGS

	WAI	EK	QUA	<u> 1-1</u>	TI	KE.	m	NGS		
DATE	TIME	TOTAL GALLONS REMOVED	TOTAL WELL VOLUMES REMOVED	TEMP. (OC)	DISSOLVED OXYGEN MG/L	рН	REDOX (EH) MV	NDUCTIVIT MHOS/CM	APPEARANCE	COMMENTS
6/28	1445	55								
	1530	60		15.1		6.96		73×10	Clear	
	1555	65		14.9		698		73x10	1	
		66		143		697		73×10		
7		<del>y                                    </del>		Ĭ		"		. 3		
										·
								-		
										·
								I		

### 'OTES:

- 1. COMMENTS SHOULD DELINEATE FINAL SAMPLE AND REPLICATE MEASUREMENTS.
- 2. ANY INSTRUMENTATION CALIBRATION OR USE ANOMALIES SHOULD BE NOTED.
- 3. APPEARANCE SHOULD BE NOTED BEFORE, DURING, AND AFTER DEVELOPMENT.

### PUMPING TECHNIQUES

DATE	PUMP TYPE	SERIAL NO.	PUMP TECHNICIAN
428	CONTRACTORS		Chi
		_	

DATE   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY   COMPANY						WA	TER	REMO'	VAL	DA		
6/28 1440 1450 5.5	DATE	į į		1	INCREMENTAL GALLONS REMOVED	TOTAL GALLONS REMOVED	SOL	TOTAL WELL VOLUMES REMOVED	PUMP INTAKE LEVEL	LEVEL PUMPIN	LEVEL	COMMENTS
	6/28	1440	1450		-					91	01	
											~	



SERIAL NO.	WS.	10 MATIT
PAGE_OF_		·

PROJECT NAME Morrison Ph 1 PROJECT NO. 1287 2832 TECHNICAL CREW C Maxine /	MAJOR I	ASK CCT T	SUBTASK
DATE & JUN 28'81	FORM CO	MPLETED BY	cm/DD
WEATHER SUMMY			
MEASURING POINT Top of Risen			
MEASURING POINT ELEV.	INI	TIAL WATER L	EVEL ELEV
SAMPLING METHOD Terlon Ba	-	_ INITIAL WA	ATER LEVEL 9'5"
TIME ELAPSED/FINAL DEVELOPME	NT/PURGIN	G. 30 Miz	TECHNICIAN CAR
SAMPLING DEPTH INTERVAL 9	_		
		_ 101112110 14	
	· · · · · · · · · · · · · · · · · · ·		
WATER QUALITY INSTRUMENTS USED	SERIAL N	O. CALIBR	RATION REFERENCE
1. Orion Dh meter	2210	See Orion ZI	oph meter Calibration labor 19
2. YSI S-C-T METER	12911		meter Calibration lax book 13
3. YSI Dissolved OxYGEN METER	2992		), meter Calibration lybook 15
5.			
3.	<u> </u>		
FINAL WATER QUALITY INSTRUMENT READING	s		TE WATER SAMPLING STRUMENT READINGS
TEMP (°C)		TEMP (°C)	15.0
CONDUCTIVITY (umhos/cm) 72 x	10'		Y (umhos/cm) $75 \times 10^{\circ}$
PH <u>6.97</u>		PH	
ЕН 218		ЕН	
D.O. (mg/1) <u>8.30</u> OTHER		D.O. (mg/1)	8.50
TECHNICIAN COM TIME ST	art <u>/600</u>	TIME FINISH	1620
		·	
CAMPIE COLLEGE OF SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPEC	m. nm //- 0.0	amon // 7	0 0000000000000000000000000000000000000
SAMPLE COLLECTION PERIOD: S	TART LOUD	_ STOP 16 C	TECHNICIAN

•			SERIAL PAGE_C	NO. WS
TOTAL VOLU	JME WATER COLL PERED: YES N	O TIME 60	TOTAL NO.	OF CONTAINERS 7 ILTER TYPE BAVICL
		OLLECTION PERIOR		
		SAMPLE CONT		
QUANTITY	CONTAINER MATERIAL	SAMPLE LABEL SERIAL NO.	PRESERVATIVES	COMMENTS
40 ML	GlASS	54 00034		VOA
14	11	SC00035		VOA
Yn GAL	<u>' ((</u>	5600036		BNA
(1	и	SL000 37		BNA
16.	PLASTIC	5600038	HN03	TOTAL METALS
14.	4	SLOW 39	HNOS	Dus "
IGAL	"	5400040		PREFILTATION
		7 000		
<del></del>	<del></del>			
		ļ		
	<del></del>	DOCUMENTA	ATION	
SAMPLE SHI		ER SEALED & PAC	KED: YES - NO.	ECHNICIANTIME### TECH.CM  AL NO. (AR 266) TECH. CM
		,		L NO. 2663 TECH CM2
THAIN OF C	.usiudi rukm:	TTUI641	PIE SERIA	7664
COMMENTS: _				
			· · · · · · · · · · · · · · · · · · ·	
		· <del></del> -		
			···	
	<del></del>			
			<del></del>	



### SAMPLE CONTROL SHEET

SERIAL NO	. SCS_	00004	_
PAGEOF			

PROJECT NAME Morrison PHIRI	DATE
PROJECT NO	SAMPLER
SAMPLE LOCATION NO. G106D	CUSTODIAN

			C	USTODIAN	
SAMPLE NO.	SAMPLE LABE	L NO.	C.O.C. NO.	SHIPPED	LAB ANALYSIS REQUEST NO.
A VOA	56000	34	2663	JUN 29-187	LAR 2663
VOA		35			
BNA		36			
BNA		37			
METAL-TOTAL		38			
METAL-DISS.		39		1	1/
Préfiltration.	<u> </u>	to	<u> </u>	V	$\frac{V}{V}$
			<del> </del>		
	· <del>-</del>				



SERIAL NO.	W\$_	00007
PAGEOF		

PROJECT NAME MORRISON DE 1	R.I.	SAMPLE LOCATION NO. TRIP BLANK OR BORING/WELL NO.
TECHNICAL CREW C. Maranes I	MAJUR TAS	K LE43 LLIA SUBTASK
DATE SUN 20, 21 87	FORM COME	PLETED BY
WEATHER RAINS	· · · · · · · · · · · · · · · · · · ·	LEVEL OF PROTECTION A B OD*
MEASURING POINT	METHOD C	F MEASUREMENT
MEASURING POINT ELEV	INITI	AL WATER LEVEL ELEV
		INITIAL WATER LEVEL
SPECIAL SAMPLING METHODS		<del></del>
		TECHNICIAN
-		PUMPING RATE/SAMPLING
WATER QUALITY INSTRUMENTS USED	SERIAL NO.	CALIBRATION REFERENCE
1.		
2. 3.		
4.		
5.		
FINAL WATER QUALITY INSTRUMENT READING		DUPLICATE WATER SAMPLING DATA INSTRUMENT READINGS
TEMP (°C)	r	'EMP (°C)
CONDUCTIVITY (umhos/cm)	· · · · · · · · · · · · · · · · · · ·	ONDUCTIVITY (umhos/cm)//
PH		PH//
D.O. (mg/1)		0.0. (mg/1)
TECHNICIAN TIME ST	ART T	IME FINISH
SAMPLE COLLECTION PERIOD: S	TART	STOP TECHNICIAN

			SERIAL N PAGE_OF	o. ws
FIELD FILT	rered: Yes_N	ECTED	TECH FIL	F CONTAINERS ZTER TYPE
		SAMPLE CON		
QUANTITY	CONTAINER MATERIAL	SAMPLE LABEL SERIAL NO.	PRESERVATIVES	COMMENTS
YOML	GLASS	5200013	NA	VOA
		DOCUMENT	ATION	
SAMPLE SHI LAB ANALYS	PPING CONTAINS	er sealed & pac rm: yes_no_	KED: YES_NO_ TIME22-00 SERIAI	CHNICIANTIME 22& TECH. CMNO. 2995-7BTECH. CMNO. 1995_TECH. CM
COMMENTS: _				
	TRIP B.	IANK DU	No piscri	ere '
			· · · · · · · · · · · · · · · · · · ·	



SERIAL NO.	WS	00012
PAGE_OF_		

PROJECT NAME Morrison Dh 1	RI.	SAMPLE LOCATION NO. TRIP BLANK		
PROJECT NAME Morrison Ph 1 RI SAMPLE LOCATION NO. TRIP BLANK PROJECT NO. 12872832 MAJOR TASK 2295 SUBTASK —				
TECHNICAL CREW C. Maxeiner	D Davens	×(T		
DATE <u>JUN 29 87</u>	FORM CO	MPLETED BY CM2 (OP		
WEATHER Sunny		LEVEL OF PROTECTION A B C D *		
MEASURING POINT ELEV	INI	TIAL WATER LEVEL ELEV		
		INITIAL WATER LEVEL		
TIME ELAPSED/FINAL DEVELOPME	NT/PURGIN	GTECHNICIAN CVZ		
		PUMPING RATE/SAMPLING		
WATER QUALITY INSTRUMENTS USED		CALIBRATION REFERENCE		
1. Of ON 210 ph meter	2210	See Orion 210 ph Meter Calibration lagbook		
2. YSI S-C-T METER	12911			
3. YSI Dissolved Oxygen meter 4.	2992	sce YSI D.O. meter Calibration logbook		
5.	<del> </del>			
FINAL WATER QUALITY		DUPLICATE WATER SAMPLING		
INSTRUMENT READING	S	DATA INSTRUMENT READINGS		
TEMP (°C)		TEMP (°C)		
CONDUCTIVITY (umhos/cm)		CONDUCTIVITY (umhos/cm)		
PH		PH		
EH		EH		
D.O. (mg/1)		D.O. (mg/1)		
TECHNICIAN TIME ST	ART	TIME FINISH		
SAMPLE COLLECTION PERIOD: S	TART <u>/00</u>	Q stop 1800 technician CM2		

*NOTE: FOR LEVELS OF PROTECTION; SEE SITE SPECIFIC SAFETY PLAN

FOR DETAILS.

			SERIAL PAGEC	NO. WS
FIELD FILT	rered: Yes_N	ECTED GOND  TIME  DLLECTION PERIO	_ TECH F	of containers_Z_
<del></del>		SAMPLE CON	TAINERS	
YTITMAUQ	CONTAINER MATERIAL	SAMPLE LABEL SERIAL NO.	PRESERVATIVES	COMMENTS
40 mc	6(AS)	5L000 41 11 42	1CE 1CE	TRIPBIANK TRIPBIANIC
		DOCUMENT	. = . 0.1	
SAMPLE SHI LAB ANALYS	PPING CONTAINE	D: YES_NO / TER SEALED & PACEM: YES_NO_	'IMET KED: YES_NO TIME_3500 SERI	ECHNICIANTIME 23 - TECH. Cc- AL NO. AL 2743 TECH. Cc- L NO. 2743 TECH. Cc
COMMENTS:_	TRIP	B(A~~ ~)	6105 CIT	2744 5 WEIL



SERIAL NO.	<b>W</b> S	00033
PAGE_OF_		

PROJECT NAME Morrison ph1 RI	OR BORING/WELL NO. TRIP BLANK
TECHNICAL CREW C Maxeinen DiDaver	COMPLETED BY CHYOD
DATE JUN 30 17 FORM	COMPLETED BY CM 700
WEATHER Surm	LEVEL OF PROTECTION A B CD HOD OF MEASUREMENT
MEASURING POINT METI	HOD OF MEASUREMENT
MEASURING POINT ELEV.	INITIAL WATER LEVEL ELEV.
SAMPLING METHOD TRIP	INITIAL WATER LEVEL
SPECIAL SAMPLING METHODS	
TIME ELAPSED/FINAL DEVELOPMENT/PURG	GINGTECHNICIAN_C/~
SAMPLING DEPTH INTERVAL	PUMPING RATE/SAMPLING
WATER QUALITY INSTRUMENTS USED SERIAL	NO. CALIBRATION REFERENCE
1.	
2.	
3.	
4.	
J	
FINAL WATER QUALITY	DUPLICATE WATER SAMPLING
INSTRUMENT READINGS	DATA INSTRUMENT READINGS
TEMP (°C)	TEMP (°C)
CONDUCTIVITY (umhos/cm)	CONDUCTIVITY (umhos/cm)
PH	PH
EH	EH
OTHER	
TECHNICIANTIME START	
SAMPLE COLLECTION PERIOD. START   60	OO STOP 18ED TECHNICIAN CM
Single Committee The Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the	DIVI IDCIMICIAN

		-	SERIAL	NO. WS
			PAGE_C	OF
FIELD FILT	rered: Yes_N	ECTED	TECH F	OF CONTAINERS 2
		SAMPLE CON	ITAINERS	
YTITMAUQ	CONTAINER MATERIAL	SAMPLE LABEL SERIAL NO.	PRESERVATIVES	COMMENTS
dome	GHOSS	5100098 1 99		VOA
	. <del></del>	DOCUMENT	TATION	
SAMPLE SHI LAB ANALYS	PPING CONTAINS	D: YES_NO ER SEALED & PAC RM: YES_NO YES_NO T:	CKED: YES_NO	ECHNICIAN  TIME AL TECH. CM  AL NO. 2739 TECH. CM  L NO. 2739 TECH. CM
COMMENTS:	w/ 61050 C	nup		



SERIAL NO.	ws · 00020 -
PAGE_OF_	

PROJECT NAME Work SON Ph 1 R.E	SAMPLE LOCATION NO. PAILER BIANK OR BORING/WELL NO. PAILER BIANK TASK 2294 SUBTASK
PROJECT NO. 12872832 MAJOR	TASK 2294 SUBTASK
TECHNICAL CREW C Marciner / D Daven	COMPLETED BY COLLO
DATE Sun 3017 81 FORM	COMPLETED BY
WEATHER DAVK	LEVEL OF PROTECTION A B C D *  OD OF MEASUREMENT
MEASURING POINTMA METH	OD OF MEASUREMENT
MEASURING POINT ELEVI	NITIAL WATER LEVEL ELEV
SAMPLING METHODTelton Brile-	INITIAL WATER LEVEL
SPECIAL SAMPLING METHODS	0 PI WATER
	INGTECHNICIAN
•	PUMPING RATE/SAMPLING
SAMPLING DEPIN INTERVAL	PUMPING RATE/ SAMPLING
WATER QUALITY SERIAL	NO. CALIBRATION REFERENCE
INSTRUMENTS USED SERIAL	
2.	
3.	
5.	
FINAL WATER QUALITY	DUPLICATE WATER SAMPLING
INSTRUMENT READINGS	DATA INSTRUMENT READINGS
TEMP (°C)	_ TEMP (°C)
CONDUCTIVITY (umhos/cm)	CONDUCTIVITY (umhos/cm)
PHEH	_ PH
D.O. (mg/1)OTHER	D.O. (mg/1)
TECHNICIAN TIME START	TIME FINISH
210	0
SAMPLE COLLECTION PERIOD: START	STOP2105 TECHNICIAN CM

			SERIAL PAGE_	NO. WS
FIELD FILT	JME WATER COLLE TERED: YES_NO DOLED DURING CO	TIME	_ TECH F	OF CONTAINERS 2 ILTER TYPE
		SAMPLE CON		
QUANTITY	CONTAINER MATERIAL	SAMPLE LABEL SERIAL NO.	PRESERVATIVES	COMMENTS
40mc	CIACS	5600061	ICE	UOA
40mL	(,	g/ 62	(Œ	VoA
		DOCUMENT	ATION	
SAMPLE SHI LAB ANALYS		R SEALED & PAC M: YES_NO_	CKED: YES_NO TIME <u>0(00</u> SERI	TIME OLO TECH. CMAL NO. 2915 TECH. M2
COMMENTS: _				



### SAMPLE CONTROL SHEET

PROJECT NO. 12872832	DATE
	CUSTODIANCe

SAMPLE NO.	SAMPLE LABEL NO.	C.O.C. NO.	SHIPPED	LAB ANALYSIS REQUEST NO.
VOA	5400061	2995/2732	Juc 2 187	LAR 2995
VOA	1 62		L	1
-				
			· · · · · · · · · · · · · · · · · · ·	
		_		
			· · · · · · · · · · · · · · · · · · ·	
				-



# WELL DEVELOPMENT & PURGING GENERAL DATA

SERIAL NO. WDG 00013

NG - HOT EILEN		
PROJECT NAME Morrison ph 1 R.I. PROJECT NO. 12872832  DATE JUN 29'87 FORM COMPLETED BY	BORING/WELL NO. CIT MAJOR TASK 2294 SI	UBTASK
WELL CONSTRU		
TOTAL DEPTH (FT) /595	BOREHOLE DIAMETER	16
GRAVEL PACK INTERVAL (FT)		
WELL PROTECTOR: YES NO FLUID INJECTED DURING DRILLING (QUANTITY)		<u></u>
WATER VOLUME DATA	WATER VOL	UMES
T . 1 29 (C)	ITEM	VOLUME
DATE OF MEASUREMENT JUN 29 87		FT ³ GALS
MEASURING POINT BUBBIE SETTING	WELL CASING	<del>   </del>
WATER LEVEL INSTRUMENT USED	GRAVEL PACK	
WATER LEVEL INSTRUMENT USED  INTIAL WATER LEVEL (FT)  LINEAR FEET OF WATER	DRILLING FLUIDS	1
LINEAR FEET OF WATERLINEAR FEET SATURATED GRAVEL PACK	 	
NOTE: QUANTITIES CALCULATED PRIOR TO DE	VELOPMENT	
DEVELOPMENT CF	RITERIA	
WATER VOLUME TO BE REMOVED (GALS) 4-14-5  ROTE: DEVELOPMENT TO BE PERFORMED IN ACCOUNTY PLAN.	MINIMUM MAXING ACE CORDANCE WITH PROJECT	T SPECIFIC
COMMENTS PLOD 150 GPA =	36000 9,725	

|--|--|

# WELL DEVELOPMENT PURGING WATER QUALITY/WATER REMOVAL

SERIAL	NO.	WD	00013
PAGE	_ OF		

PROJECT NAME Marrison ph 1 gr PROJECT NO. 12872832	BORING/WELL NO. CITY WELL I MAJOR TASK 2294 SUBTASK
DATE JUN 29 87 FORM COMPLETED BY	Cot /00

WATER QUALITY INSTRUMENTS

DATE	INSTRUMENT	SERIAL NO	CALIBRATION PERFORMED (~)	TECHNICIAN
6/29	Orion 210 ph Meter	2210		C. Maxeiner
6/29	YSI S-C-T METER	12911	V	C. Maxeiner
· •				
			·	
	i		1	

WATER QUALITY READINGS

		<u>er</u>	× 011					NGS			
DATE	TIME	TOTAL GALLONS REMOVED	TOTAL WELL VOLUMES REMOVED	TEMP. (OC)	DISSOLVED OXYGEN;	Hd	REDOX (EH) MV	CONDUCTIVITY UMHOS/CM	APPEARANCE .	COMMENTS	5
6/29	1055	)		139	,	7.16		(65 x 16)		Urtes	RUNNING
6/29	1057	NG		135	F	7.16		للائلة كاما	L		
1											
			<u> </u>								
						П					
				i							
							$\neg$				
<del></del>			<del></del>							•	

### NOTES:

- 1. COMMENTS SHOULD DELINEATE FINAL SAMPLE AND REPLICATE MEASUREMENTS.
- 2. ANY INSTRUMENTATION CALIBRATION OR USE ANOMALIES SHOULD BE NOTED.
- 3. APPEARANCE SHOULD BE NOTED BEFORE, DURING, AND AFTER DEVELOPMENT.

### PUMPING TECHNIQUES

DATE	PUMP TYPE	SERIAL NO.	PUMP TECHNICIAN
6/29	NG	NG	WALT HEATH

					WA	TER	REMO'	VAL	DA	TA	
DATE	NO AWNA	PUMP OFF	PUMPING RATE (GPM)	INCREMENTAL GALLONS REMOVED	TOTAL GALLONS REMOVED	INCREMENTAL WELL VOLUMES REMOVED	TOTAL WELL VOLUMES REMOVED	PUMP INTAKE LEVEL	WATER LEVEL BEFORE PUMPING	WATER LEVEL AFTER PUMPING	COMMENTS
6/29	2700	Hav	150			·			λķ	NG	
	0750	1/30								}	
				I			İ			ļ	



SERIAL NO.	WS _	00013
PAGE_OF_		-

PROJECT NAME Morrison ph 1	R.I	SAMPLE LOCATION NO. CITY WELL! OR BORING/WELL NO. CITY WELL! SK 2295 2294 SUBTASK		
PROJECT NO. 12872832	MAJOR TAS	SK 2295 2294 SUBTASK		
TECHNICAL CREW C Maxeiner	D. D. aven po	at Do		
DATE <u>JUN 29 '87</u>	FORM COME	PLETED BY		
	-	LEVEL OF PROTECTION A B C D*		
MEASURING POINT BUBBIE	METHOD C	OF MEASUREMENT BURBIR SETTIFIC		
MEASURING POINT ELEV	INITI	AL WATER LEVEL ELEV		
SAMPLING METHOD		INITIAL WATER LEVEL NG		
		•		
•		5 m /~ TECHNICIAN CM?		
SAMPLING DEPTH INTERVAL 7	AP	PUMPING RATE/SAMPLING - 150cm		
WATER QUALITY INSTRUMENTS USED		CALIBRATION REFERENCE		
1. Orion 210 ph meter	2210	See Orion Dh meter Calibration logbox 14		
2. VSI S-C-T METER	12911	See Orion YSI S-C-T meter Calibration Logbook		
3 YSI Dissolved Oxygen METER	2992	see YSI Dissolved Oxygen Calibration logbook 15		
4.				
5.	[			
FINAL WATER QUALITY INSTRUMENT READINGS		DUPLICATE WATER SAMPLING DATA INSTRUMENT READINGS		
TEMP (°C)	-			
CONDUCTIVITY (umhos/cm) 65 x		CONDUCTIVITY (umhos/cm)		
PH	l l	•		
EH 254		PH		
D.O. (mg/1) 6.62/4.67 OTHER		D.O. (mg/1)		
TECHNICIAN CONT TIME ST	art <u>///5</u> 1	TIME FINISH		
SAMPLE COLLECTION PERIOD: S		STOP //20 TECHNICIAN and		

·			SERIAL N	NO. WS
FIELD FILT	rered: Yes_n		TECH FI	OF CONTAINERS LTER TYPE
		SAMPLE CONT	AINERS	
QUANTITY	CONTAINER MATERIAL	SAMPLE LABEL P SERIAL NO.	RESERVATIVES	COMMENTS
40ML 40ML	GlASS	SL 000 43 1 44	1CE	VOA VOA
		DOCUMENTA	TION	
SAMPLE SHI LAB ANALYS	PPING CONTAINE	ER SEALED & PACK RM: YES_NO_ T	ED: YES_NO_ IME 2300 SERIA	CHNICIAN TIME2300 TECH.CA L NO 1.4271 TECH. CA NO 2743 TECH. CA
OMMENTS:_				



### SAMPLE CONTROL SHEET

SERIAL	NO.	SCS_	00005	
PAGE	OF _			

PROJECT NAME MONISON PHIRI	DATE 6/29/87
PROJECT NO	SAMPLERCarz
SAMPLE LOCATION NO. City Well 1	CUSTODIAN

SAMPLE NO.	SAMPLE LAB	EL NO.	C.O.C. NO.	SHIPPED	LAB ANALYSIS REQUEST NO.
CTYNELLI	5L 000	43	BA 2743	J4N 30 87	CAR 2743
<i>ε</i> 1	(1		l	JUN 30 87	4
			V.		
	<del></del>				
	· · · · · · · · · · · · · · · · · · ·				
_					
		.			



# WELL DEVELOPMENT & PURGING GENERAL DATA

SERIAL NO. WDG
PAGE OF 00015

¿ Dup

<u> </u>	
PROJECT NAME MOCCISON Ph 1 RI	BORING/WELL NO. CITY WELL #3
PROJECT NO. 12872832	MAJOR TASK 2294 SUBTASK
DATE JUN 29'81 FORM COMPLETED BY	CH2/DD
WELL CONSTR	
TOTAL DEPTH (FT) /600'	BOREHOLE DIAMETER
GRAVEL PACK INTERVAL (FT) NG	_ WELL DIAMETER (ID)(IN) 26-
WELL PROTECTOR: YES NO	PADLOCK NO. CG
FLUID INJECTED DURING DRILLING (QUANTIT	ry) <u>~~</u>
WATER VOLUME DATA	WATER VOLUMES
DATE OF MEASUREMENT JUN 29 87	WATER VOLUMES  ITEM VOLUME  FT ³ GALS
MEASURING POINT <u>Surble Sctting</u>	— FI GALS
WATER LEVEL INSTRUMENT USED FUT CON B	
INTIAL WATER LEVEL (FT) /70'	
LINEAR FEET OF WATER	DRILLING FLUIDS
LINEAR FEET OF WATER	<u></u> G-
NOTE: QUANTITIES CALCULATED PRIOR TO I	DEVELOPMENT
DEVELOPMENT	CRITERIA
METHOD OF DEVELOPMENT // 50	HAVGE
WATER QUALITY MEASUREMENTS: YES VO	
WATER VOLUME TO BE REMOVED (GALS)	
0 b21	නව
NOTE: DEVELOPMENT TO BE PERFORMED IN A	ACCORDANCE WITH PROJECT SPECIFIC
WELL DEVELOPMENT PLAN.	
COMMENTS PUMP RATE 65	TO gpm = 156000 gpres.
COPHENTS	



### WELL DEVELOPMENT. & PURGING WATER QUALITY/WATER REMOVAL

SERIAL	NO.	WD	00015
PAGE			•

PROJECT NAME Morrison Dh 1 R.I	BORING/WELL NO. CITY WELL #3
PROJECT NO. 12872832	MAJOR TASK 229 4 SUBTASK
DATE JUN 29 '87 FORM COMPLETED BY	C142/00

WATER QUALITY INSTRUMENTS

DATE	INSTRUMENT	SERIAL NO.	CALIBRATION PERFORMED (~)	TECHNICIAN
6/29	Orion 210 DA METER	t e		C. Maxeiner
6/29	YSI S-C-T meter	12911	/	C. Maxeiner
		·		
1				

	WAT	LK	QUA	LL	T.X	KE	ותי	NGS		
DATE	TIME	TOTAL GALLONS REMOVED	1 2	TEMP. (OC)	DISSOLVED OXYGEN MG/L	Нq	REDOX (EH) MV	NDUCTIVITATIONS/CM	APPEARANCE	COMMENTS
6/29	1140	N6		15.1		7.30		51xlo"	CLEAR	41+VS. HOMIN
	1146	NG		15.0		7.52		SlxId	V.	
/										
	٠									
						Ш				
					_					
L										
						$\sqcup$				
						$\sqcup$				
				$\dashv$						
]				_			_			

### 'OTES:

- 1. COMMENTS SHOULD DELINEATE FINAL SAMPLE AND REPLICATE MEASUREMENTS.
- 2. ANY INSTRUMENTATION CALIBRATION OR USE ANOMALIES SHOULD BE NOTED.
- 3. APPEARANCE SHOULD BE NOTED BEFORE, DURING, AND AFTER DEVELOPMENT.



SERIAL NO.	WS_	00015
PAGEOF		

PROJECT NAME Morcison Ph 1 RI	SAMPLE LOCATION NO. CITY WELL #3
PROJECT NO. 12872832 MAJ	OR TASK 2293 1294 SUBTASK
TECHNICAL CREW C. Maxeiner	
DATE JUN 29 87 FOR	M COMPLETED BY CH2/DD
MEASURING POINT BUBBLE SETTIALSME	THOD OF MEASUREMENT ACC  INITIAL WATER LEVEL ELEV
SPECIAL SAMPLING METHODS	STATIC-170'  INITIAL WATER LEVEL PUMPING - 210'  TAP  RGING SMIR TECHNICIAN _CM^2
	PUMPING RATE/SAMPLING .25 9 PM
WATER QUALITY INSTRUMENTS USED SERIA	AL NO. CALIBRATION REFERENCE
1. Orion 210 ph meter ZZI	O See-Orion 210 ph Meter Calibration logbook 1
	11 See VSI S-C-T meter Calibration logbook 13
3. YSI Discolved Oxygen meter 299	22 See VSI D.O. MERT Calibration lagbook 15
5.	
FINAL WATER QUALITY INSTRUMENT READINGS	DUPLICATE WATER SAMPLING DATA INSTRUMENT READINGS
TEMP (°C)	TEMP (°C)
CONDUCTIVITY (umhos/cm) 5/x10'	CONDUCTIVITY (umhos/cm)
PH 7.28	
EH 222	EH
D.O. (mg/1) 5,36 OTHER	D.O. (mg/1)
TECHNICIAN OF TIME START 13	•
SAMPLE COLLECTION PERIOD: START	200 STOP 1205 TECHNICIAN CM2

				RIAL NO. WS				
TELD FIL		TIME	TECH	NO. OF CONTAINERS 2 FILTER TYPE NO.				
		SAMPLE CON						
UANTITY CONTAINER SAMPLE LABEL PRESERVATIVES COMMENTS								
40m	61A55	2L000 45	ILE	VOA				
40 ри	1'	11 46	4	LOA				
		DOCUMENT	ATION					
AMPLE SHI AB ANALYS	SIS REQUEST FOR CUSTODY FORM:	R SEALED & PAC M: YES_NO_	KED: YES TIME <u>23</u> 00	TECHNICIAN  NO TIME 230 TECH  SERIAL NO 4274 TECH 64  SERIAL NO 2743 TECH 64  2744				



SERIAL NO.	ws - 00014
PAGE _OF _	

PROJECT NAME MORESON Ph 1	R.I.	SAMPLE LOCATION NO. CITY NEW #3 PULL					
PROJECT NAME MORISON Ph 1 R.I. SAMPLE LOCATION NO. CIT, NOW PROJECT NO. 12872832 MAJOR TASK 229.4 SUBTASK							
TECHNICAL CREW C. MaxeINER							
DATE JUN 29 '87	FORM COM	APLETED BY					
MEASURING POINT Bussel Sett	METHOD	LEVEL OF PROTECTION A B C OF OF MEASUREMENT					
		STATIC -170'					
SAMPLING METHOD		INITIAL WATER LEVEL Pumping - 210'					
•		AP					
TIME ELAPSED/FINAL DEVELOPME	NT/PURGING	PUMPING RATE/SAMPLING . 25 GPM					
SAMPLING DEFIN INTERVAL		FOMFING RAIL/SAMELING 123 97					
		<del></del>					
WATER QUALITY INSTRUMENTS USED	SERIAL NO	. CALIBRATION REFERENCE					
1 Orion 210 ph meter	2210	see Orion 210 ph meter Calibration logbook 1					
2. YSI S-C-T meter	12911	See YSI S-C-T meter Calibration laybook					
3. YSI Dissolved Oxygen METER		See YSI D.O. Meter Calibration Logbook 15					
4.		<u> </u>					
5.							
FINAL WATER QUALITY INSTRUMENT READINGS	s	DUPLICATE WATER SAMPLING DATA INSTRUMENT READINGS					
TEMP (°C)15.0		TEMP (°C)					
CONDUCTIVITY (umhos/cm) 51x1	0'	CONDUCTIVITY (umhos/cm)					
PH7.28		PH					
EH	ЕН						
D.O. (mg/1)5.36 OTHER	1	D.O. (mg/1)					
TECHNICIAN Car TIME ST							
SAMPLE COLLECTION PERIOD: S	tart <u>/205</u>	STOP (2/0 TECHNICIAN C1					



### SAMPLE CONTROL SHEET

SERIAL NO. SCS 0006
PAGE __OF __

PROJECT NAME Movies on PH 1 RE D.	ATE 6/28/87	
PROJECT NO. (287283) S	•	
SAMPLE LOCATION NO. CITY WELL #3 CI	USTODIAN	

Cityweutz 4 Lizweutzoup	51000 45 46 47 48	2743	Jun 30 '87	CAR 2743
117 NEW +3 DUD	47			,
1	47		1	L
1	V 48			
		4	1	V
				· · · · · · · · · · · · · · · · · · ·
		· · · · · · · · · · · · · · · · · · ·		
		·		



# WELL DEVELOPMENT & PURGING GENERAL DATA

SERIAL NO. WDG 00016 PAGE OF

PROJECT NAME Morrison ph 1 RT PROJECT NO. 12872832  DATE JUN 29'87 FORM COMPLETED BY	BORING/WELL NO. CITYWELL #4  MAJOR TASK 229 SUBTASK —  CM2/DD
WELL CONSTRU	CTION
TOTAL DEPTH (FT)	WELL DIAMETER (ID)(IN) NC PADLOCK NO
WATER VOLUME DATA	WATER VOLUMES
DATE OF MEASUREMENT 6/29/87  MEASURING POINT 3CRBIC SETTING WATER LEVEL INSTRUMENT USED BUBBIC INTIAL WATER LEVEL (FT) 2>c' LINEAR FEET OF WATER ACL	TITEM VOLUME FT ³ GALS WELL CASING GRAVEL PACK DRILLING FLUIDS
NOTE: QUANTITIES CALCULATED PRIOR TO DE	
METHOD OF DEVELOPMENT	MINIMUM MAXIMUM
COMMENTS	4 (71tus.) = 474600



## WELL DEVELOPMENT.& PURGING WATER QUALITY/WATER REMOVAL

SERIAL	NO.	WD	<u></u> _	<u>00016</u>
PAGE	_ of		_	

PROJECT NAME Morrison Dh.1 RI	BORING/WELL NO. CITY WELL 44
PROJECT NO. 12872832	MAJOR TASK ZZ9 4 SUBTASK
DATE JUN 39 87 FORM COMPLETED BY	C12/0P

WATER QUALITY INSTRUMENTS

DATE	INSTRUMENT	SERIAL NO.	CALIBRATION PERFORMED (~)	TECHNICIAN
6/29	Orion 2.10 ph meter			C Maxeiner
6/29	S YSI S-C-T METER		V	C. Maxeiner
ļ <u>.</u>				
I	. i			

WATER QUALITY READINGS

			~					NGS		· · · · · · · · · · · · · · · · · · ·
DATE	TIME	TOTAL GALLONS REMOVED	TOTAL WELL VOLUMES REMOVED	TEMP. (OC)	DISSOLVED OXYGEN; MG/L	ЬН	REDOX (EH) MV	CONDUCTIVITY UMHOS/CM	APPEARANCE	COMMENTS
		are-		15.0	1	7.27		YZO NO	CLEAR	7Hrs RUN
6/29	1340	N.		15.0		731		HZZXIO	APPEARANCE CLEAR L	714-3 RUN High Sulpher Smell
										<i>J</i> '
ļ										
					· -					
				$\dashv$						
						$\vdash$		-		
						-				
<del></del>				$\dashv$						
						$\vdash$				
				$\dashv$						
Ll	1	1	1	1		$oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{ol}}}}}}}}}}}}}}}}}}$		1		

#### NOTES:

- 1. COMMENTS SHOULD DELINEATE FINAL SAMPLE AND REPLICATE MEASUREMENTS.
- 2. ANY INSTRUMENTATION CALIBRATION OR USE ANOMALIES SHOULD BE NOTED.
- 3. APPEARANCE SHOULD BE NOTED BEFORE, DURING, AND AFTER DEVELOPMENT.

#### PUMPING TECHNIQUES

DATE	PUMP TYPE	SERIAL NO.	PUMP TECHNICIAN
6/20	Na		WALT HEATH
1,0	Na		

					WA	TER	REMO	VAL	DA	TA			
DATE	PUMP ON	PUMP OFF	PUMPING RATE (GPM)	INCREMENTAL GALLONS REMOVED	TOTAL GALLONS REMOVED	INCREMENTAL WELL VOLUMES REMOVED	TOTAL WELL VOLUMES REMOVED	PUMP INTAKE LEVEL	WATER LEVEL BEFORE PUMPING	WATER LEVEL AFTER PUMPING	COMMENTS		
429	630	1330	1130						270	355	7 H/S. K	200000000	



SERIAL NO.	WS_	00016
PAGE_OF_		

PROJECT NAME Macrison ph	1 K.T	SAMPLE LOCATION NO. CITY NELL #4 OR BORING/WELL NO. SK 2294 SUBTASK
PROJECT NO. 12872832	MAJOR TA	SK 2294 SUBTASK
TECHNICAL CREW C. Maxeinec		
DATE JUN 29 '87	FORM COM	IPLETED BY CH-/PD
MEASURING POINT POUBBLE SET	METHOD	LEVEL OF PROTECTION A B C 5 *  OF MEASUREMENT B \( \text{B} \)   E \( \text{E} \)   \( \text{VC} \)    IAL WATER LEVEL ELEV \( \text{VC} \)
<i>T</i> .		STATIC - 270'
SAMPLING METHOD	<u></u>	INITIAL WATER LEVEL pumping - 355
SPECIAL SAMPLING METHODS	THP	
		TECHNICIAN Cun
SAMPLING DEPTH INTERVAL	177	PUMPING RATE/SAMPLING .25 CPM
WATER QUALITY	CERTAL NO	. CALIBRATION REFERENCE
INSTRUMENTS USED	ļ	
1. Or. ON 210 ph meter	2210	Sec Orionzio phimeter Calibration logbook 14
	12911 2992	1
3. YSI Dissolved Oxygen 4.	2772	See YSI Da meter Calibration labor 1
5.		
<u> </u>	L	
FINAL WATER QUALITY INSTRUMENT READING		DUPLICATE WATER SAMPLING DATA INSTRUMENT READINGS
TEMP (°C)		TEMP (°C)
CONDUCTIVITY (umhos/cm) 425	x 10°	CONDUCTIVITY (umhos/cm)
PH 7.3Z		PH
EH 15Z		EH
D.O. (mg/1) 5.64		D.O. (mg/l)
OTHER		
TECHNICIAN COV TIME ST	ART 1345	time finish 1350
SAMPLE COLLECTION PERIOD: S	TART /3 45	STOP 1350 TECHNICIAN
*NOTE: FOR LEVELS OF PROTEC	TION·SEE S	TTE SPECIFIC SAFETY PLAN

TIELD FILT	TERED: YES_N	GTIMEOLLECTION PERIO	_ TECH F	OF CONTAINERS
<del></del>		SAMPLE CON		
YTITMAUC	CONTAINER MATERIAL	SAMPLE LABEL SERIAL NO.	PRESERVATIVES	COMMENTS
yone	6/A)	500049	ICE	UDA
40 mc	1.0	\$ 50	ice	LOA
		DOCUMENT	ATION	
SAMPLE SHI LAB ANALYS	PPING CONTAINI	ER SEALED & PAC	CKED: YES_NO_ TIME <i>U300</i> SERIA	ECHNICIAN TIME 73 & TECH CAL NO (AR 214) TECH CAL NO 2145 TECH CAL NO 2144
	· · · · · · · · · · · · · · · · · · ·			
		<del></del>	<del></del>	· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·			



SERIAL	NO.	scs_	00007
PAGE	OF _		

PROJECT NAME MONISON PHIRI	DATE 6/29/87
PROJECT NO	
SAMPLE LOCATION NO. CITY WELL #4	

SAMPLE NO.	SAMPLE LABEL NO.	C.O.C. NO.	SHIPPED	LAB ANALYSIS REQUEST NO.
corywency	5100049	2743	JUN 30 87	LAR 2743
	5100049 1 50	2743	Jun 30 87	4
		*		
		<u> </u>		



### WELL DEVELOPMENT & PURGING GENERAL DATA

SERIAL NO. WDG
PAGE OF 00030

PROJECT NAME Morrison ph 1 RI	BORING/WELL NO. EE	war
PROJECT NO. 12872832 MAJOR TASK 2295 SUBT		
DATE SUN 30 37 FORM COMPLETED BY	CH2/PP	
WELL CONSTRU	CTION	
TOTAL DEPTH (FT) NOT EIVEN	BOREHOLE DIAMETER	NG
GRAVEL PACK INTERVAL (FT)	WELL DIAMETER (ID)(I)	N) KG
WELL PROTECTOR: YESNO	PADLOCK NO. N/A	, , , , , , , , , , , , , , , , , , ,
FLUID INJECTED DURING DRILLING (QUANTITY	) NC	
WATER VOLUME DATA	·	MEC
	TTEM	VOLUME
DATE OF MEASUREMENT	{	FT ³ GALS
MEASURING POINT		
WATER LEVEL INSTRUMENT USED		
INTIAL WATER LEVEL (FT)	_ DRILLING FLUIDS	
LINEAR FEET OF WATER		
LINEAR FEET SATURATED GRAVEL PACK	_	
NOTE: QUANTITIES CALCULATED PRIOR TO DE	VELOPMENT	
DEVELOPMENT CE	RITERIA	
METHOD OF DEVELOPMENT RINNING F	-lace A	
WATER QUALITY MEASUREMENTS: YES V NO		
		TIM
WATER VOLUME TO BE REMOVED (GALS)	5 - (520)	011
	CORDANCE WITH PROJECT	r SPECIFIC
WELL DEVELOPMENT PLAN.		
COMMENTS		
CONTIENTS		



# WELL DEVELOPMENT.& PURGING WATER QUALITY/WATER REMOVAL

SERIAL	NO.	WD	00020
PAGE			

	BORING/WELL NO	
DATE JUN 30 '87 FORM COMPLETED BY	CM2/00	

WATER QUALITY INSTRUMENTS

DATE	INSTRUMENT	SERIAL NO.	CALIBRATION PERFORMED (~)	TECHNICIAN
6/30	Orion 210 sh meter	1		D Davenport
6/30	& YSI - S-C-7 MOTER	129/1		D Davenport
				,
	,	<u> </u>		

WATER QUALITY READINGS

	*****		2011				ш,	NGS		<del></del>
DATE	TIME	TOTAL GALLONS REMOVED	TOTAL WELL VOLUMES REMOVED	TEMP. (OC)	DISSOLVED OXYGEN MG/L	Hd	REDOX (EH) MV	CONDUCTIVITY UMHOS/CM	APPEARANCE	COMMENTS
6/30	1511					7.13	224	86×10	CLEAR	
6/30	1514			1 —	I			36×10	4	
1-1-0							,,,	-		
					<b></b> -					
							-	-		.,,
				H		$\vdash$				
						Н				
				$\dashv$		$\vdash$				
					ļ	$\square$			<del></del>	
						$\square$				
				_		Ш				
				]						
				[						
				_						
						ــــــــــــــــــــــــــــــــــــــ				<u> </u>

#### 'OTES:

- 1. COMMENTS SHOULD DELINEATE FINAL SAMPLE AND REPLICATE MEASUREMENTS.
- 2. ANY INSTRUMENTATION CALIBRATION OR USE ANOMALIES SHOULD BE NOTED.
- 3. APPEARANCE SHOULD BE NOTED BEFORE, DURING, AND AFTER DEVELOPMENT.

#### PUMPING TECHNIQUES

PUMP TYPE	SERIAL NO.	PUMP TECHNICIAN
		·
	PUMP TYPE	PUMP TYPE SERIAL NO.

S S S S	
PUMP ON PUMP OFF GPM)  INCREMENTAL GALLONS REMOVED TOTAL GALLONS REMOVED TOTAL WELL VOLUMES REMOVED PUMP INTAKE LEVEL WATER LEVEL WATER LEVEL WATER LEVEL AFTER PUMPIN WATER LEVEL AFTER PUMPIN WATER LEVEL AFTER PUMPIN WATER LEVEL AFTER PUMPIN WATER LEVEL AFTER PUMPIN WATER LEVEL AFTER PUMPIN WATER LEVEL AFTER PUMPIN WATER PUMPIN WATER PUMPIN SINGLAND AFTER PUMPIN SINGLAND AFTER PUMPIN SINGLAND AFTER PUMPIN SINGLAND AFTER PUMPIN SINGLAND AFTER PUMPIN SINGLAND AFTER PUMPIN SINGLAND AFTER PUMPIN SINGLAND AFTER PUMPIN SINGLAND AFTER PUMPIN SINGLAND AFTER PUMPIN SINGLAND AFTER PUMPIN SINGLAND AFTER PUMPIN SINGLAND AFTER PUMPIN SINGLAND AFTER PUMPIN SINGLAND AFTER PUMPIN SINGLAND AFTER PUMPIN SINGLAND AFTER PUMPIN SINGLAND AFTER PUMPIN SINGLAND AFTER PUMPIN SINGLAND AFTER PUMPIN SINGLAND AFTER PUMPIN SINGLAND AFTER PUMPIN SINGLAND AFTER PUMPIN SINGLAND AFTER PUMPIN SINGLAND AFTER PUMPIN SINGLAND AFTER PUMPIN SINGLAND AFTER PUMPIN SINGLAND AFTER PUMPIN SINGLAND AFTER PUMPIN SINGLAND AFTER PUMPIN SINGLAND AFTER PUMPIN SINGLAND AFTER PUMPIN SINGLAND AFTER PUMPIN SINGLAND AFTER PUMPIN SINGLAND AFTER PUMPIN SINGLAND AFTER PUMPIN SINGLAND AFTER PUMPIN SINGLAND AFTER PUMPIN SINGLAND AFTER PUMPIN SINGLAND AFTER PUMPIN SINGLAND AFTER PUMPIN SINGLAND AFTER PUMPIN SINGLAND AFTER PUMPIN SINGLAND AFTER PUMPIN SINGLAND AFTER PUMPIN SINGLAND AFTER PUMPIN SINGLAND AFTER PUMPIN SINGLAND AFTER PUMPIN SINGLAND AFTER PUMPIN SINGLAND AFTER PUMPIN SINGLAND AFTER PUMPIN SINGLAND AFTER PUMPIN SINGLAND AFTER PUMPIN SINGLAND AFTER PUMPIN SINGLAND AFTER PUMPIN SINGLAND AFTER PUMPIN SINGLAND AFTER PUMPIN SINGLAND AFTER PUMPIN SINGLAND AFTER PUMPIN SINGLAND AFTER PUMPIN SINGLAND AFTER PUMPIN SINGLAND AFTER PUMPIN SINGLAND AFTER PUMPIN SINGLAND AFTER PUMPIN SINGLAND AFTER PUMPIN SINGLAND AFTER PUMPIN SINGLAND AFTER PUMPIN SINGLAND AFTER PUMPIN SINGLAND AFTER PUMPIN SINGLAND AFTER PUMPIN SINGLAND AFTER PUMPIN SINGLAND AFTER PUMPIN SINGLAND AFTER PUMPIN SINGLAND AFTER PUMPIN SINGLAND AFTER PUMPIN SINGLAND AFTER PUMPIN SINGLAND AFTER PUMPIN SINGLAND	
NE	



SERIAL NO.	WS.	00030
PAGE_OF_		

PROJECT NAME Morrison ph 1 PROJECT NO. 12872832 TECHNICAL CREW C Maxeiner / DATE SUN 30 '81	RI MAJOR I D. Davenpor FORM CO	SAMPLE LOCATION NO. GEWELL OR BORING/WELL NO. CASK 2294 SUBTASK  TOMPLETED BY
•		LEVEL OF PROTECTION A B C 🛈 *
MEASURING POINT	METHOD	OF MEASUREMENT
MEASURING POINT ELEV	INI	TIAL WATER LEVEL ELEV.
SAMPLING METHOD TAG  SPECIAL SAMPLING METHODS		INITIAL WATER LEVEL
·		GTECHNICIAN_C^~
SAMPLING DEPTH INTERVAL	TAP	_ PUMPING RATE/SAMPLING
WATER QUALITY INSTRUMENTS USED	SERIAL N	O. CALIBRATION REFERENCE
1. Drion 210 ph meter	2210	See Orion ZID an meter Calibration lybook 14
2. YSI S-C-T meter		See YSI S.CT meter Calibration logbook 13
3. YSI Dissolved Oxygen METER	2992	
4.		
5.		
FINAL WATER QUALITY	Y s	DUPLICATE WATER SAMPLING DATA INSTRUMENT READINGS
TEMP (°C) 14,0		
CONDUCTIVITY (umhos/cm) 85)	<u></u>	TEMP (°C)CONDUCTIVITY (umhos/cm)
PH	·	PH
EH ZoS		EH
D.O. (mg/1) 8.14		D.O. (mg/1)
• 0/	TART 1520	TIME FINISH 1525
		11.27

SAMPLE COLLECTION PERIOD: START 1520 STOP 15275 TECHNICIAN 60

SAMPLES CO	OLED DURING C	SAMPLE CON		
UANTITY	CONTAINER	SAMPLE LABEL	PRESERVATIVES	COMMENTS
2× 40 ML	MATERIAL	SERIAL NO.		Joh's
	S(1)32			
				· · · · · · · · · · · · · · · · · · ·
	<del></del>			
				<del></del>
		<u> </u>		
		<u> </u>		<del></del>
		1		
		DOCUMENT	ATION	
AMPLE SHI	PPING CONTAIN	D: YES_NO T ER SEALED & PAC PRM: YES_NO_ YES_NO_ TI	KED: YES_NO_ TIME 0600 SERIAL	TIME 200 TECH. C
OMMENTS: _				



SERIAL	NO.	SCS_	00016	1
PAGE				

PROJECT NAME MOVISON PHIRT	DATE 14N 30 87
PROJECT NO. 12672632	SAMPLER
SAMPLE LOCATION NO. CE WELL	CUSTODIAN

	SAMPLE LABEL NO.	C.O.C. NO.	SHIPPED	LAB ANALYSIS REQUEST NO.
NOA'S	56000 82 7 83	223/2734	July 2 187	223
			<u> </u>	
			· -	

## APPENDIX E SURFACE WATER AND SEDIMENT SAMPLING FORMS



SERIAL NO.	WS_	00022
PAGE_OF_		

5.	
3. Ysi Do Merer	2992 15
2. YSI SCT METER 1	2911 11 11 13
1. DRION 210 PHMETER	2210 CAL BOOK 14
WATER QUALITY INSTRUMENTS USED SE	RIAL NO. CALIBRATION REFERENCE
SAMPLING DEPTH INTERVAL	-7.0/ PUMPING RATE/SAMPLING
	PURGING TECHNICIAN _ <
SPECIAL SAMPLING METHODS	
SAMPLING METHOD POINT SOURCE	BAILER INITIAL WATER REVEL 2'
MEASURING POINT ELEV.	INITIAL WATER LEVEL ELEV
MEASURING POINT WHITE GURFACE	METHOD OF MEASUREMENT
WEATHER Sarm	LEVEL OF PROTECTION A B C
DATE 50N 30 87	FORM COMPLETED BY CTC/OP
TECHNICAL CREW C Maxeiner Di	FORM COMPLETED BYCTC ² /OP
PROJECT NO. 128/2032	SAMPLE LOCATION NO. SIGN OR BORING/WELL NO. MAJOR TASK 2293 SUBTASK

*NOTE: FOR LEVELS OF PROTECTION; SEE SITE SPECIFIC SAFETY PLAN

FOR DETAILS.

			SERIAL PAGE_C	NO. WS
FIELD FILT	rered: Yes_n	ECTED 60 ML OLLECTION PERIO	TECH F	OF CONTAINERS 2
		SAMPLE CON		
QUANTITY	CONTAINER MATERIAL	SAMPLE LABEL SERIAL NO.	PRESERVATIVES	COMMENTS
240m	COLASS	SL000 70 771	ICE	UDA
-				
<b>_</b>		DOCUMENT	ATION	
AMPLE SHI AB ANALYS HAIN OF C	PPING CONTAINIGIS REQUEST FOR CUSTODY FORM:		KED: YES NO	ECHNICIANTIME 200 TECHAL NO. 123  TECH L NO. 223  TECH
OMMENTS:_				
			· · · · · · · · · · · · · · · · · · ·	



SERIAL NO.	WS_	200
PAGE_OF_		

PROJECT NAME MORRISON PH	1 Rì	SAMPLE LOCATION NO. 5001
PROJECT NO.  2672832	MAJOR TAS	SK 2294 SUBTASK
TECHNICAL CREW CAMPINE	هراس	
DATE	FORM COME	PLETED BY CM2/DD
•		LEVEL OF PROTECTION A B C (D)*
MEASURING POINT W. SURFACE	METHOD C	of measurement TAPE
MEASURING POINT ELEV.	INITI	AL WATER LEVEL ELEV.
		Deptition initial water seven 7.0
SPECIAL SAMPLING METHODS		
TIME ELAPSED/FINAL DEVELOPME	NT/PURGING_	TECHNICIAN CO
SAMPLING DEPTH INTERVAL7	-81	PUMPING RATE/SAMPLING
	<del> </del>	
WATER QUALITY	CEDIAL NO	CALIBRATION REFERENCE
INSTRUMENTS USED	SERIAL NO.	CABIBRATION REFERENCE
1.		
2.		
3.		
5.		
[3.		1,
FINAL WATER QUALITY INSTRUMENT READINGS		DUPLICATE WATER SAMPLING DATA INSTRUMENT READINGS
TEMP (°C)		remp (°C)
CONDUCTIVITY (umhos/cm)	C	CONDUCTIVITY (umhos/cm)
PH	<u>'</u> F	РН
ЕН	1	EH
D.O. (mg/l)OTHER		0.0. (mg/l)
TECHNICIAN TIME ST	ART 1	TIME FINISH
SAMPLE COLLECTION PERIOD: S'	TART <u>08</u> 30	STOP 0850 TECHNICIAN CM

٠٠. ٠. ٠			1 .	NO. WS
FIELD FILT	rered: Yes_N		TECH F	OF CONTAINERS
		SAMPLE CON		
QUANTITY	CONTAINER MATERIAL	SAMPLE LABEL SERIAL NO.	PRESERVATIVES	COMMENTS
202	C-1/255	51.00072	(ce	JOA -301)
				·
		DOCUMENT	ATION	
SAMPLE SHI	PPING CONTAINE SIS REQUEST FOR CUSTODY FORM:	YES_NO_ T	CKED: YES NO TIME OF SERI IME OF SERIA	TIME 0.66 TECH. CAN AL NO. 223/ TECH. CAN AL NO. 223/ TECH. Que 273-/
COMMENTS: _	DIL EIZ	Senpy SAN	Dy SILT W/OR	La. GLAC



SERIAL	NO.	SCS_	00012	
PAGE	OF _			

PROJECT NAME MOVELSON PHIRE	DATE 50 87
PROJECT NO. 12872632	SAMPLER COY
SAMPLE LOCATION NO	CUSTODIAN

SAMPLE NO.	SAMPLE LABEL NO.	C.O.C. NO.	SHIPPED	LAB ANALYSIS REQUEST NO.
2-40m	SL00070271	2231/2134	JUL2 187	LARZZZ/
202.	1 72	2231/2734	1	1
			<del></del>	
			<del></del>	
		-		
			<del></del>	
			<del></del>	
			<del></del>	



SERIAL NO. WS . 00017 PAGE_OF_

PROJECT NAME: Morrison ph 1 PROJECT NO. 12872832	R.T.	SAMPLE OR BORT	LOCATION NO	ETHAN AllEN PON	
PROJECT NO. 12872832	MAJOR T	TASK 2294 SUBTASK			
TECHNICAL CREW C Maxeiner					
DATE JUN 29 '87	FORM CO	MPLETED BY	Cv	12/00	
WEATHER Sunmy					
MEASURING PCINT 6-5	METHOD	OF MEASUR	EMENT	5161+J	
MEASURING POINT ELEV	INI	TIAL WATER	LEVEL ELE	v	
SAMPLING METHOD Teflon 3					
SPECIAL SAMPLING METHODS	Poin	17 Source	. K		
TIME ELAPSED/FINAL DEVELOPME	NT/PURGING	G	TE	CHNICIAN	
SAMPLING DEPTH INTERVAL	~ C ~ c ~ c	DIMBING	DAME (CAMD)	TNC	
SAMPLING DEPTH INTERVAL _ 7 20	3 DURFING	_ PUMPING	RATE/SAMP.	DING	
			· · · · · · · · · · · · · · · · · · ·		
LIAMED OUAL TON	<del>,</del>	<del>-                                    </del>			
WATER QUALITY INSTRUMENTS USED	SERIAL NO	O. CALI	BRATION RE	FERENCE	
1. Orion 210 ph merer	2210	See-Orion	210 ph mere	Calibration logbook	
2. YSI S-C-T METER	12911	See- YSI S-	C-T METER Ca	libration lugbook 13	
3. YSI Disselved Oxygen meter					
4.					
5.					
FINAL WATER QUALITY INSTRUMENT READING	s			R SAMPLING IT READINGS	
TEMP (°C) 27.2	·	TEMP (°C)		·	
CONDUCTIVITY (umhos/cm)_6/x		CONDUCTIV	ITY (umhos	/cm)	
рн7.80		РН			
ЕН 272		ЕН		<del></del>	
D.O. (mg/1) 7.04 OTHER					
TECHNICIAN TIME ST	ART 1640	TIME FINI	SH <u>1645</u>		
SAMPLE COLLECTION PERIOD: S	TART <u>/6 40</u>	STOP /	645 TECH	NICIAN CAZOO	

,			SERIAL PAGE_O	NO. WS
FIELD FILT	rered: Yes_N	ECTED GO M C O TIME OLLECTION PERIO	TECH FI	OF CONTAINERS
		SAMPLE CON	TAINERS	
QUANTITY	CONTAINER MATERIAL	SAMPLE LABEL SERIAL NO.	PRESERVATIVES	COMMENTS
YOML	GIASS	56000 57	1	VoA
YOML	(,	4 52	V	4
	40.			
		DOCUMENT	ATION	
SAMPLE SHI LAB ANALYS	PPING CONTAINS	RM: YES_NO_	KED: YES <u></u> NO_ TIME <i>230•</i> SERIA	ECHNICIANTIME 23 © TECH. CML NO 1 Al 27 G TECH. CML NO . 2743 TECH. CML 2744
COMMENTS:_				

(



# SOUL WATER SAMPLING DATA

SERIAL NO.	WS.	00018
PAGE_OF_		•

PROJECT NAME Momsson ph 1 PROJECT NO. 12877837 TECHNICAL CREW C. Maxeiner	MAJOR TASE	SAMPLE L OR BORIN 2294	CATION NO. ETILAN S/WELL NO. ETILAN SUBTASK	Mun Por
DATE JUN 29 '87	FORM COMPI	ETED BY	CO(2/Op	
WEATHER SUNNY	I	EVEL OF	PROTECTION A B C	: ① *
MEASURING POINT	METHOD OF	MEASURE	MENTSIGUA	
MEASURING POINT ELEV	INITIA	L WATER	LEVEL ELEV	<u>د</u>
SAMPLING METHOD Borrow Se	Ť			3
SPECIAL SAMPLING METHODS				
TIME ELAPSED/FINAL DEVELOPMEN				
SAMPLING DEPTH INTERVAL	<u>:</u>	PUMPING	RATE/SAMPLING	
				<del></del>
WATER QUALITY INSTRUMENTS USED	SERIAL NO.	CALI	RATION REFERENCE	Ξ
1. N/A		<del></del>		
2.				
3.				
4.		·	·	
5.			<del></del>	
FINAL WATER QUALITY INSTRUMENT READINGS			TE WATER SAM STRUMENT REA	
TEMP (°C) N/A		–		
CONDUCTIVITY (umhos/cm)	1	CONDUCTIVITY (umhos/cm)		
PH		PH		
EH		D.O. (mg/1)		
D.O. (mg/1)	b.	-	) <u></u>	
	ART (600 TI		H	
SAMPLE COLLECTION PERIOD: ST	TART 1600	STOP <u>/6/</u>	C TECHNICIAN _	CM

e en la colonia de despuisación de <u>establica especiales</u>			PAGE_O	NO. WS
FIELD FILT	TERED: YES_N	ECTED 202 O TIME OLLECTION PERIO	_ TECH FI	OF CONTAINERS_/
		SAMPLE CON		
YTITMAUQ	CONTAINER MATERIAL	SAMPLE LABEL SERIAL NO.	PRESERVATIVES	COMMENTS
207	CelASS	5600053	168	UOA
				·
		-		
	·	DOCUMENT	ATION	
AMPLE SHI AB ANALYS	PPING CONTAINS	er sealed & pac rm: yes_no_	KED: YES <u>NO</u> TIME 300 SERIA	ECHNICIANTIME 2300 TECH. CM AL NO 4022 TECH. CO L NO . 2243 TECH. CO
OMMENTS:_				
				· · · · · · · · · · · · · · · · · · ·
				···
	<del></del>			



SERIAL NO.	SCS_	8 0000
PAGEOF _	<del></del>	

PROJECT NO	SAMPLE CONTRAINE MAR 400 (2872832) CATION NO. ETHAN (	N PI+IRI DA	SERIAL NO. PAGEOF TE6/2 MPLER STODIAN	
SAMPLE NO.	1	C.O.C. NO.	SHIPPED	LAB ANALYSIS REQUEST NO.
tho	5400051	2743	JUN 30'87	LAR 2743
Hzo	52	1		/
Soil	V 53		<u> </u>	T T



SERIAL NO.	WS	00024
PAGE_OF_		, ,

PROJECT NAME Morrison ph	1 2E	SAMPLE LOCATION NO. 530 OR BORING/WELL NO. 530 SK 229 9 SUBTASK
PROJECT NO. 1287 2832	MAJOR TA	SK 229 9 PP SUBTASK
TECHNICAL CREW C Maxeiner / 1	) Davenport	
DATE _SUN 30 '87	FORM COM	PLETED BY
•		LEVEL OF PROTECTION A B C (1)*
MEASURING POINT N. SURFACE	METHOD (	of measurement <u>TAPE</u>
MEASURING POINT ELEV	INIT	IAL WATER LEVEL ELEV.
		DEPTH 1.5'
SPECIAL SAMPLING METHODS	<del></del>	
TIME ELAPSED/FINAL DEVELOPME	NT/PURGING.	TECHNICIAN CVC
		PUMPING RATE/SAMPLING
SAMPLING DEPTH INTERVAL	2=1.3	PUMPING RATE/SAMPLING
	<del></del>	
LIAMED OUALTMY		T
WATER QUALITY INSTRUMENTS USED	SERIAL NO.	CALIBRATION REFERENCE
1. Orion 210 ph Meter	2210	See Orion 210 ph Meter Calibration 1046 16
	12911	See VSI S-C-T meter Calibration lagbook 1
3. YSI Dissolved oxygen merer		
4.		,
5.		
FINAL WATER QUALITY INSTRUMENT READINGS		DUPLICATE WATER SAMPLING DATA INSTRUMENT READINGS
TEMP (°C) 22.5	:	remp (°C)
CONDUCTIVITY (umhos/cm) 58)		CONDUCTIVITY (umhos/cm)
PH 8.11	!	РН
ЕН		ЕН
D.O. (mg/1) 7.99 OTHER	1	D.O. (mg/1)
TECHNICIAN CHAT TIME ST	ART 1105	rime finish 1110
SAMPLE COLLECTION PERIOD: S'		STOP 1110 TECHNICIAN CM2

. • •			SERIAL PAGE(	NO. WS
FIELD FIL	TERED: YES_N		TECH F	OF CONTAINERS
		SAMPLE CON	TAINERS	
QUANTITY	CONTAINER MATERIAL	SAMPLE LABEL SERIAL NO.	PRESERVATIVES	COMMENTS
2-40 ML	Elass	SL000 73274	<del> </del>	UOA
	<u> </u>			
				-
		DOCUMENT	ATION	
SAMPLE CON SAMPLE SHI LAB ANALYS CHAIN OF C	NTAINERS SEALED IPPING CONTAINE SIS REQUEST FOR CUSTODY FORM:	O: YES_NO_ T CR SEALED & PAC RM: YES_NO_ YES_NO_ TI	TIMET KED:YESNO TIMESERIA	TIME OVO TECH. CM  AL NO. 2231 TECH. CM  L NO. 2231 TECH. CM
COMMENTS:			<del></del>	



SERIAL NO.	WS	00025
PAGE_OF_		

WEATHER SUNM	LEVEL OF PROTECTION A B CD *  OF MEASUREMENT TAPE
WEATHER SUNM	LEVEL OF PROTECTION A B CD *  OF MEASUREMENT
	of measurementTAPE
MEASURING POINT W. SLIKETHED METHOD	·
MEASURING POINT ELEV INIT	TIAL WATER LEVEL ELEV
SAMPLING METHOD BOTTOM (ED SAMPLE) SPECIAL SAMPLING METHODS	
TIME ELAPSED/FINAL DEVELOPMENT/PURGING	
SAMPLING DEPTH INTERVAL 2-2.5'	
SAMPLING DEPTH INTERVAL	PUMPING RATE/SAMPLING
WATER QUALITY SERIAL NO	. CALIBRATION REFERENCE
2.	
3. 4.	
5.	
FINAL WATER QUALITY INSTRUMENT READINGS	DUPLICATE WATER SAMPLING DATA INSTRUMENT READINGS
TEMP (°C)	TEMP (°C)
CONDUCTIVITY (umhos/cm)	CONDUCTIVITY (umhos/cm)
	PH
	EH
D.O. (mg/1)	D.O. (mg/1)
TECHNICIAN TIME START	
SAMPLE COLLECTION PERIOD. START 1100	

			PAGE_C	
TELD FILT	JME WATER COLLETERED: YES_NO	TIME	TECH F	OF CONTAINERS
		SAMPLE CON	- <del>-</del>	
YTITMAU	CONTAINER MATERIAL	SAMPLE LABEL SERIAL NO.	PRESERVATIVES	COMMENTS
202	Class	SL00075	100	UOA
<u> </u>				
	······································			
			1	
		DOCUMENT	ATION	
MPLE SHI	TAINERS SEALED PPING CONTAINE	R SEALED & PAC	KED: YES_NO	TIMECON TECH CA
AB ANALYS	IS REQUEST FOR	M: YES_NO_	TIME SERI	AL NO. TECH.
MAIN OF C	OSTODI PORTI	110211011	ME 0100 SERIA	L NO. 223/ TECH. 6
mments: _	DK GR	Si SAND		
			<del></del>	



SERIAL	NO.	SCS_	0001	3
PAGE	OF _	<del></del>		

PROJECT NAME MORRISON PHI RI	DATE 54N 30'87
PROJECT NO	SAMPLER CUT
SAMPLE LOCATION NO550!	CUSTODIAN

SAMPLE NO.	SAMPLE LABEL NO.	C.O.C. NO.	SHIPPED	LAB ANALYSIS REQUEST NO.
V6A 2+	SL 00073;74	2231/2734	Suc 2187	48 2231
VOA	200075	Ĺ		4
	·			
			=	
			<del></del>	



SERIAL NO.	WS_	00026
PAGE_OF_		

	•		
PROJECT NAME Morrison pu 1 PROJECT NO. 12872832	- RI	SAMPLE LOCATION NO. 5	302
PROJECT NO. 1287 2832	MAJOR TAS	K 2294 SUBTASK	
ECHNICAL CREW C Maxeiner	D Daven port		
DATE SUN 30 '87	FORM COMP	LETED BYCm²/pp	
21 6/6	/		- 0
JEATHER Pry cldy	SUNNY	LEVEL OF PROTECTION A B	C (D) *
MEASURING POINT <u>WSURFA</u>	METHOD O	F MEASUREMENT	
MEASURING POINT ELEV	INITI	AL WATER LEVEL ELEV	
SAMPLING METHOD POINT Sou	IRLE BAILEY	INITIAL WATER LEVEL O	- (
PECIAL SAMPLING METHODS			
			017
IME ELAPSED/FINAL DEVELOPM	ENT/PURGING_	TECHNICIA	AN <u>C/ C</u>
SAMPLING DEPTH INTERVAL	0-1	PUMPING RATE/SAMPLING	
			<del></del>
WATER QUALITY INSTRUMENTS USED	SERIAL NO.	CALIBRATION REFERENCE	Œ
1. Orion 210 John meter	2210	See Orion 210 ph meter Colibration	· log book
2. YSI S-C-T meter		see YSI S-C-T mover Calibration	
3. YSI Dissolved Oxygen Meter		SEE YSI D. O. MOTOR CALIBRATIO	, ,
4.			_ : ' _ ]
5.			
EINIAL MATER OUT	<b>.</b>		151 6145
FINAL WATER QUALIT	Υ 1	DUPLICATE WATER SAM	1PLING

INSTRUMENT READINGS	DATA INSTRUMENT READINGS
TEMP (°C)	TEMP (°C)
TECHNICIAN CVZ TIME START 1230	TIME FINISH 1235

SAMPLE COLLECTION PERIOD: START 1230 STOP 1235 TECHNICIAN CM

- ,			SERIAL PAGE_C	NO. WS
FIELD FIL	UME WATER COLLETERED: YES_NO	TIME	TOTAL NO. _ TECH F	OF CONTAINERS
		SAMPLE CON	TAINERS	
QUANTITY	CONTAINER MATERIAL	SAMPLE LABEL SERIAL NO.	PRESERVATIVES	COMMENTS
2 × 40 ML	GLAS	76;77		VOA'S
	·			
		DOCUMENT	ATION	
SAMPLE SHI	SIS REQUEST FUR	R SEALED & PAC	KED: YES NO.	ECHNICIANTIME OLOOTECH. CNZ AL NO. 2231 TECH CMZ L NO. 2231 TECHOM
COMMENTS:				
	· · · · · · · · · · · · · · · · · · ·			



# SOIL WATER SAMPLING DATA

		<u> </u>
SERIAL NO.	WS_	<del>99027</del>
PAGE_OF_		

PROJECT NAME Morrison Dh 1 R.I	SAMPLE LOCATION NO. 5302			
OJECT NAME Workson ph 1 R.T SAMPLE LOCATION NO. \$307  OJECT NO. 12872832 MAJOR TASK 2294 SUBTASK				
rechnical crew C Maxeiner/ DD averporT				
TECHNICAL CREW C Maxeiner Davenport  DATE SUN 30 '87 FORM COMPLETED BY CTL2 / DD				
WEATHER PTL: CIET SUNN MEASURING POINT HO SURFACE METH				
SAMPLING METHOD SED SAMPLING METHODS	mfler INITIAL WATER LEVEL um 1.0			
TIME FLADSED/FINAL DEVELOPMENT/PURG	ING TECHNICIAN C/			
TITEL BERT SECTIONS	PUMPING RATE/SAMPLING			
SAMPLING DEPTH INTERVAL	PUMPING RATE/SAMPLING			
WATER QUALITY CERTAL				
INSTRUMENTS USED SERIAL	NO. CALIBRATION REFERENCE			
1. N/A				
2.				
3.				
4.				
5.				
FINAL WATER QUALITY INSTRUMENT READINGS	DUPLICATE WATER SAMPLING DATA INSTRUMENT READINGS			
TEMP (°C)	TEMP (°C)			
CONDUCTIVITY (umhos/cm)	CONDUCTIVITY (umhos/cm)			
PH	PH			
EH				
D.O. (mg/1)OTHER	D.O. (mg/1)			
TECHNICIAN TIME START	TIME FINISH			
*NOTE: FOR LEVELS OF PROTECTION: SE				

		SAMPLE CON		
YTITMAU	CONTAINER MATERIAL	SAMPLE LABEL SERIAL NO.	PRESERVATIVES	COMMENTS
202	GIASS	78		VOA
		DOCUMENT	ATION	
AMPLE SHI	PPING CONTAINISIS REQUEST FORM:	RM: YES_NO_ YES_NO_ T	TIME SUCE SERI	TIME OF TECH. CA AL NO. 2231 TECH. OF L NO. 2231 TECH. CA



SERIAL N	ю.	SCS	0001	4
PAGEO	F	<del></del>		

PROJECT NAME Morrison ph 1 R.I	DATE
PROJECT NO. 1287 7832	SAMPLERCUZ
SAMPLE LOCATION NOSSOZ	CUSTODIAN

SAMPLE NO.	SAMPLE LABEL NO.	C.O.C. NO:	SHIPPED	LAB ANALYSIS REQUEST NO.
UOA	76 ; 77	2231 /2734	Ju-2'87	2231
VOASGIL	78	1	<u> </u>	V
		•		
.				
				-



SERIAL NO.	ws-	00028
PAGE_OF_		

<del></del>				
PROJECT NAME Morrison pl	1 R.T	OR BORING/	WELL NO. 53	502 Pup
PROJECT NAME Morrison ple PROJECT NO. 12872832	MAJOR TAS	K 2294	SUBTASK	
TECHNICAL CREW C Maxeiner	D DavenporT			
TECHNICAL CREW C Maxeiner   DATE JUN 30 87	FORM COME	LETED BY	CH2/00	
				···
WEATHER TIY Cldy (	SUNM	LEVEL OF PR	OTECTION A B	3 C D *
MEASURING POINT HEO SURF	A F MEMUAN C	E MEXCHDEME	TARE	
i				
MEASURING POINT ELEV	INITI	AL WATER LE	VEL ELEV	
	``		D. D. C. C. C. C. C. C. C. C. C. C. C. C. C.	·
SAMPLING METHOD _ POWT Sour	CE BAILER	INITIAL WAS	TER LEVEL	0-1'
SPECIAL SAMPLING METHODS				
TIME ELAPSED/FINAL DEVELOPM	$\mathtt{ENT/PURGING}_{-}$		TECHNIC	IAN
SAMPLING DEPTH INTERVAL	0-1	DIMPTNC PA	TE/SAMPLING	
SAIL DING DELTH THIS NAME TO SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE T		10111110 141		···-
WATER QUALITY	T			
INSTRUMENTS USED	SERIAL NO.	CALIBRA	TION REFEREN	NCE
1 Orion 210 sh meter	2210	Sec Orion 210	ph meter Caliba	MATION lugbout 1
2. YSI S-C-T meter	12911		Meter Calibratio	
3. YSI Dissolved Oxygen meter	2992		er Calibration 1	
4.				
5.			•	
	•			
FINAL WATER QUALIT	<b>v</b> .	DUDITOAT	E WATER SA	MPI ING
INSTRUMENT READING			TRUMENT RE	
	1	27,777		_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

FINAL WATER QUALITY INSTRUMENT READINGS	DUPLICATE WATER SAMPLING DATA INSTRUMENT READINGS
TEMP (°C) 23 22.5  CONDUCTIVITY (umhos/cm) 69x10'  PH 803  EH 707  D.O. (mg/1) 8.53	TEMP (°C) CONDUCTIVITY (umhos/cm) PH EH D.O. (mg/1)
SAMPLE COLLECTION PERIOD: START 1230	

** ** ** **			SERIAL PAGE_C	NO. WS
FIELD FILT	TERED: YES_N		TECH F	OF CONTAINERS >
		SAMPLE CON		
QUANTITY	CONTAINER MATERIAL	SAMPLE LABEL SERIAL NO.	PRESERVATIVES	COMMENTS
& yome	CIAIS	79 780		VoA
			-	
-	·			-
				· · · · · · · · · · · · · · · · · · ·
l		DOCUMENT	ATION	
AMPLE SHI AB ANALYS	PPING CONTAIN IS REQUEST FO	D: YES_NO	TIME OPO SERIA	ECHNICIANTECH. CO AL NO. 2231 TECH. CO L NO. 2231 TECH. CO
OMMENTS: _				
: <u>_</u>				
				<del>, , , , , , , , , , , , , , , , , , , </del>



SERIAL NO.	WS_	00029
PAGE_OF_		-

PROJECT NAME Morrison pul RI	OR TASK 2294 SUBTASK				
PROJECT NO. 17877832 MAJ	OR TASK 2294 SUBTASK				
TECHNICAL CREW C Maxeiner   Davenport  DATE JUNI 30 '87 FORM COMPLETED BY					
DATE JUNI 30 '87 FOR	M COMPLETED BY				
WEATHER PTIL Clay/SUNN	LEVEL OF PROTECTION A B C D *				
MEASURING POINT HE SURFACE ME	THOD OF MEASUREMENT				
MEASURING POINT ELEV.	INITIAL WATER LEVEL ELEV				
	Depth 1.0'				
SPECIAL SAMPLING METHODS					
TIME ELAPSED/FINAL DEVELOPMENT/PUR	RGING TECHNICIAN C				
SAMPLING DEPTH INTERVAL/-Z '	PUMPING RATE/SAMPLING				
1. Allo	AL NO. CALIBRATION REFERENCE				
2.					
3.					
5.					
3.					
FINAL WATER QUALITY INSTRUMENT READINGS	DUPLICATE WATER SAMPLING DATA INSTRUMENT READINGS				
TEMP (°C)					
CONDUCTIVITY (umhos/cm)					
PH	PH				
EH	EH				
OTHER					
TECHNICIAN TIME START	TIME FINISH				
SAMPLE COLLECTION PERIOD: START	12to stop 1230 technician C/12				

Con C				NO. WS
FIELD FILT	rered: Yes_n		TECH F	OF CONTAINERS
		SAMPLE CON		
QUANTITY	CONTAINER MATERIAL	SAMPLE LABEL SERIAL NO.	PRESERVATIVES	COMMENTS
207	GIASS	81		JOA
·				
	<del></del>			
		<del> </del>		
	·	<del> </del>		
	·			
				·
		DOCUMENT	ATION	
SAMPLE SHI LAB ANALYS	PPING CONTAINI	D: YES_NOTER SEALED & PAC RM: YES_NO YES_NOTE	CKED: YES_NO TIME 6/66 SERI	TIME & TECH. COMPANDAL NO. 223/ TECH. COMPANDAL NO. 223/ TECH. COMPANDAL NO. 223/ TECH.
COMMENTS:	bk GR S	A CEMEL 1/si	,026	
	<del> </del>			
			·	



SERIAL	NO.	SCS	0001	5	_
PAGE	OF _				

PROJECT NAME Morrison ph 1 R.I.	DATE
PROJECT NO.   1287 2832	SAMPLER
SAMPLE LOCATION NO. 5302 Dup	CUSTODIAN Caz

SAMPLE NO.	SAMPLE LABEL NO.	C.O.C. NO.	SHIPPED	LAB ANALYSIS REQUEST NO.
10 A	79,80	2231/2734	July 2 87	2231
VOA Soil	81	2231 (2734	July 2 87	
				,
				•

The person or authorized representative (such as plant managers, superintendents, trusteds or attorneys) of persons required to notify must sign the form and provide a mailing address (if different than address in item A). For other persons providing notification, the signature is optional. Check the boxes which best describe the relationship to the site of the person required to notify if you are not required to notify check. "Other"

K.M. Fox, Manager, Manufacturing

Street 709 W. Wall St.

City Morrison State IL Zip Code 61270

Date 1/8/

Date 1/8/

#### Notification of Hazardous Waste Site

United States **Environmental Protection** Agency Washington DC 20460

This initial notification information is required by Section 103(c) of the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 and must

Please type or print in ink. If you need additional space, use separate sheets of pager. Indicate the letter of the item which applies.

be mailed by June 9, 1981, US EPA ID #ILD005272992 Person Required to General Electric Co. Enter the name and address of the person N.one or organization required to notify. 709 W. Wall St. <u>Sirre</u> Morrison 61270 CHY Zip Code R Site Location: City dump Name of Site Enter the common name (if known) and location of the site 9806067 Street Genesee Morrison Whitesideside IL City Person to Contact Skaff, Joseph Environmental & Safety Eng. Name (Last, First and Title) Enter the name, title (if applicable), and business telephone number of the person 1-(815)-772-2131 to contact regarding information submitted on this form. Dates of Waste Handling: Enter the years that you estimate waste 1949 1959 (estimate) From (Year) treatment, storage, or disposal began and ended at the site.

Waste Type: Choose the option you prefer to complete

Option 1: Select general waste types and source categories. If you do not know the general waste types or sources, you are encouraged to describe the site in Item 1-Description of Site.

General Type of Waste: Place an X in the appropriate boxes. The categories listed overlap. Check each applicable category.

Source of Waste: Place an X in the appropriate boxes.

1. D Organics 2. D Inorganics

3. X Solvents

4. D Pesticides

5. D Heavy metals

6. Acids

7. D Bases

8. C) PCBs

9. D Mixed Municipal Waste

10. D Unknown

11. D Other (Specify)

1. D Mining

2. [] Construction

3. D Textiles

4. D Fertilizer

5. D Paper/Printing

6. D Leather Tanning

7. [] Iron/Steel Foundry

8. Chemical, General

9. 

Plating / Polishing

10. Military/Ammunition -

11. 

Electrical Conductors

12. 

Transformers

13. 
Utility Companies

14, 🗆 Sanitary, Refuse

15. (7 Photofinish

16. (1) Lab. Hospital

17 🛘 Unknown

18 X Other (Specify) <u>Manufacturing</u>

appliance controls

Lorm Approved COMENS 2009 0138

Option 2: This option is available to persons familiar with the Resource Conservation and Recovery Act (RCRA) Section 3001 regulations (40 CFR Part 261).

Specific Type of Waste:

EPA has assigned a four-digit number to each hazardous waste listed in the regulations under Section 3001 of RCRA. Enter the appropriate four-digit number in the boxes provided. A copy of the list of hazardous wastes and codes can be obtained by contacting the EPA Region serving the State in which the site is located.

F001		
	<del></del>	
<del></del>	<del></del>	<u> </u>
	<del></del>	
		<del></del>

000089 JEN-881